Review Article ISSN 2835-6276

American Journal of Medical and Clinical Research & Reviews

Methods of localisation of sentinel node biopsy for breast cancer patients - current and prospective overview

Monika Rezacova

Oncoplastic breast surgeon University Hospital Olomouc

*Correspondence: Monika Rezacova

Received: 05 Oct 2025; Accepted: 10 Oct 2025; Published: 15 Oct 2025

Citation: Monika Rezacova. Methods of localisation of sentinel node biopsy for breast cancer patients - current and prospective overview. AJMCRR. 2025; 4(10): 1-8.

Abstract

Background

Breast cancer is one of the most common cancers in the adult population and due to advances in screening, its numbers are increasing every year. Assessment of sentinel node is a standardized method for staging of the axillary disease in clinically and radiologically normal axilla. Most recently attempts have been made for different than traditional dual technique.

Methods

We have looked into available research and databases to explore various available options that have been trialed or that show some prospective in sentinel node localisation. Some of these showed great potential for non-invasive/minimally invasive assessment in the future.

Results

While researching this topic, there was obvious division into operative and non-operative techniques. The operative techniques were more traditional dual technique or combination/sole tracer with newer techniques such as indocyanine green or superparamagnetic iron oxide. The non-operative techniques usually showed a combination of advanced imaging with or without biopsy.

Discussion

Although the dual technique is reliable and brings results there are some promising data from both operative and non-operative techniques. While the operative options offer mainly alternatives to the dual technique while avoiding known side effects, the non-operative techniques show quite revolutionary potential. As we are already reducing the amount of surgical intervention in the axilla, this might be an area for further research and trials.

Keywords: Sentinel Node Biopsy, Breast Cancer, Prospective Overview.

AJMCRR, 2025 Volume 4 | Issue 10 | 1 of 8

Background

Breast cancer is one of the most common cancers [1] in the adult population and due to advances in cally and radiologically normal axilla.

Sentinel node biopsy "dual using been explored. Worldwide single tracer method is view is in the table below. [2]

acceptable due to the problems mentioned above.

screening, its numbers are increasing every year. This overview is to serve as a summary of tech-Assessment of sentinel node is a standardized niques currently used with some non-operative method for staging of the axillary disease in clini- techniques that are currently being explored and may change practice completely in the future.

tech- Methods

nique" (combination of radioisotope and blue dye) Thorough search of the PubMed database has been has been standard in the UK for many years. This is performed to summarize different methods of sentia well established technique that can achieve more nel node biopsy marking. This has been combined than 90% identification rate with less than 10% with the author's own experience from panel disfalse-negative rate. However due to its logistics cussion and different practice over Europe. For the issues, availability and adverse site effects, other purpose of this article division for operative and methods of marking sentinel node biopsy have non-operative technique has been used, the over-

OPERATIVE TECHNIQUES	Radioactive tracer
	Blue dye
	Combination technique ("dual method")
	Superparamagnetic iron oxide
	Fluorescence technique Indocyanine green Fluorescein
	Tattooing with sterile black carbon suspension
NON-OPERATIVE TECHNIQUES	Computer tomography lymphography
	Contrast enhanced ultrasound
	Photoacoustic imaging
	Radiomics

Results Radioactive tracer

niques or as a single tracer, it brings with it finan- careful theatre list planning and management. [3] cial as well as logistical burden. The injection has to happen as close to surgery as possible, which The main financial burden comes from the radioac-

The day before surgery means an extra trip for the patient and potentially lower signal on the probe in The most common tracer used isTcM99m. It is theatre. The day of the surgery can pose delays as used as a sole agent or in combination with other most nuclear medicine departments in the UK do methods. Whether used combined with other tech- not open until 9 am. This on its own requires a

means either on a day of surgery or the day before. tive element of the tracer. Although it is safe to use

AJMCRR, 2025

aged accordingly. Not all hospitals are equipped to cussed below. store radioactive material on site and rely on delivery on the day of surgery.

good detection rates. [4]

agents, further details would be discussed in the due to the related adverse risks. combined technique part of this article.

Blue dye

nowadays the tendency moved to usage of Patent cine. Blue V. It is rarely used as a single agent but works well in combination with radioactive tracer.

Usage of blue dye carries a risk of complications (SPIO) have been initially used in magnetic resosuch as tattooing of the skin and allergic reaction nance as a contract agent. Endomagnetics Ltd dewhich can range from rash to anaphylaxis. Unless veloped Sienna+ applied this technology which is part of a trial, the adverse reactions to blue dye are used as tracer in sentinel node biopsies. It is user severely under-reported.

blue dye itself by different surgeons in the UK. sentinel node stains brown and it is detectable us-Some use the blue dye neat but use 1ml or 2ml ap- ing hand-held Sentimag probe. This is a big adplications. While some surgeons prefer diluted so- vantage as it combines the visual element with a lution with normal saline or water. This can differ magnetometer. However a slightly longer time has from using 1-2ml of blue dye and 1-9ml of solution to be allowed for the migration of the radioisotope agent. In the studies that have been conducted, recommendations are 20 minutes. As it relies on there is no significant difference between diluted ferromagnetic signal, it could be distorted by metal and undiluted blue dye. [5]

in the vast majority of patients, it is a radioactive As blue dye is usually used as part of "combined compound and therefore has to be stored and man-technique" with radioactive tracer, it would be dis-

Combination technique

This technique uses both radioactive and clue dye The biggest advantage of radioactive tracer is the and it is the golden standard for sentinel node biopfact that it could be used in almost all patients with sy. Using this combined technique has achieved minimal risk of adverse reaction. This is a very at- identification rates of 96-97% in both AMAROS tractive option and even as a single agent it has and ALMANAC trials. [6,7] It has been proven before that using the combination technique is better than using either tracer in isolation. Despite this As it is usually used in combination with other many centres have decided to omit use of blue dye

Although this technique has a very high identification rate, it also combines the disadvantages of both This is a well established and recognised technique. including adverse reactions to blue dye as well as Historically methylene blue has been used, while the logistic and financial burden of nuclear medi-

Superparamagnetic iron oxide

Nanoparticles of superparamagnetic iron oxide friendly with a similar sequence as blue dye. 2ml of Sienna+ is diluted to 5ml with saline and injected There are some differences reported in use of the into the breast and massaged for 5 minutes. The instruments and therefore plastic instruments are recommended.

rous metal containing devices in the chest wall. [8] iodine allergy as it contains sodium iodide.

The technique is contraindicated in patients with which makes identification of sentinel node very iron allergy, iron overload, pacemaker or other fer- difficult. The ICG cannot be used in patients with

The detection rate has been reported 94.4-98% by It appears a very simple and efficient method howdifferent studies and recent meta-analysis showed ever there is lack of evidence comparing this to the non inferiority of this technique to standard sentinel standard technique. node detection techniques.

The tracer is not radioactive and therefore the is- Fluorescein is a low cost dye that has initially years and distort MRI images. [9]

Fluorescein

sues connected with radioactivity of tracer are not found its use in ophthalmology and neurosurgery. present, however the transcutaneous detection of Its 10% solution is widely available and a blue light the probe is definitely worse than that of radioac- source is needed to excite fluorescence. It is detive tracer. Its detection worsens with increased scribed in sentinel node mapping for colorectal tudepth of the tissues. Additionally there could be mours. A single randomised trial has been conductbrown discoloration of the skin and detectable ed and their interim analysis showed promising damagnetic activity which can persist for up to 5 ta in similar detection rates to the standard combined technique. This appears to be a promising low cost option that could be available in developing countries, however the evidence is limited. [11]

Fluorescence techniques **Indocyanine green (ICG)**

The main use of indocyanine green is to assess liv- Tattooing with sterile black carbon suspension er function, cardiac output and free flap perfusion. Tattooing of sentinel nodes or tumours is an old It binds to plasma proteins and fluoresces in near-technique that is still widely used. It uses suspendinfrared wavelengths. When injected as blue dye ed carbon particles and can get injected straight (intra or subdermally into the retroareolar region), after code biopsy not only into the node but can be it could be visualised in the axilla to help and deter- used to fill the biopsy tract to help and guide surmine sentinel nodes. It requires a special equipment geons during the operation. It results in black staincamera as it is not visible to the naked eye. This ing to the node and the tract. However it is not visiincreases the cost of the procedure and therefore is ble on any imaging and therefore relies on correct usually used in the centres where ICG and the camplacement in the first attempt. It is an effective and eras are used for other purposes. [10]

low cost technique which is in some countries used in combination with blue day or radioactive tracer. In our unit, the main downfall of this otherwise It could be used as marking prior to neoadjuvant

quite slick technique was that you need an extra chemotherapy with no disturbance of imaging that pair of hands to hold the camera or you are con- is used to monitor progress, especially MRI. [12] stantly switching between operating and scanning.

phatics can lead to leakage of ICG into the wound fore can help further confirmation of correct node

The other disadvantage is that disruption of lym- It is also well seen on pathological slides and there-

sampling.

It cannot be used as sentinel node tracer as such but diation from CT itself. It is difficult to see this has great advantages in marking nodes for targeted method replacing the established combined techaxillary dissection.

Although sentinel node biopsy is minimally inva- Contrast enhanced ultrasound (CEUS) la.

Computed tomography lymphography (CTLG)

a combination of blue dye or IGC with 3D CTLG. into the retroareolar region and massaged to the It has been done 1 day prior to surgery by injecting breast. US is used shortly following this mapping the tracer as usual, proceeding to CT shortly after. the lymphatics and sentinel node. This could be 3D CT images are then reconstructed to show lym- used for percutaneous sampling of the sentinel phatics and sentinel nodes. These could be marked node to try and avoid biopsy all together. on the skin using a laser navigator system.

sue with cancer cells.

The detection rate of sentinel node is really high **Photoacoustic imaging (PAI)** tases. [13]

This is a promising technique however it does not gy being converted to heat and thermoelastic ex-

take the pressure of logistics from the radiology department. Furthermore it exposes patients to raniques but there is definitely scope for future work.

sive as compared to axillary clearance, it is still This method combines the use of ultrasound conassociated with some risk and adverse reaction to trast agent with specific mode on the machine. It the tracer being used. More recently, trials chal- can obtain CEUS images to help identify sentinel lenging the need for any axillary treatment in pa- node. The second generation of contrast agents ustients with minimal disease in the axilla, have been es microbubbles of various gases within a shell. conducted. It could raise the question whether there Once the microbubble is destroyed, the gas is reis a role for sentinel node biopsy in the future. leased and can be identified by the machine. The Some of the efforts of research have been redi- gases are inert and do not interfere with the body, rected towards non surgical assessment of the axil- however the shell can be regarded as foreign material by the immune system and cause hypersensitivity.

This method has been mainly used in Japan. It uses The contrast is injected similar to the other agents

The detection rate of CEUS ranges from 70 to It has been noted that there is a high chance of me- 100% in various studies.[14] There is a high false tastasis when the images showed not stained or negative rate reported in some of the studies. Depoorly stained sentinel nodes or blocked lymphat- spite that the CEUS has a good potential and has ics. This could be explained by replacement of tis- several advantages including no radiation and no effect on renal or thyroid function.

(98-100%) for sentinel node biopsy, however the This type of imaging has been attracting a lot of CTLG alone has high false negative rates of metas- interest due to its potential. It uses an optical beam inducing vibration and rotational oscillation of a particular wavelength. This leads to delivered enerquency of the wave is in the ultrasonic range and newer techniques are reactions to already reported therefore could be detected by the US. Images can adverse reactions and complications or other issues be used as microscopy, tomography or cross sec- that we have encountered over the years (financial tional depending on the detection scheme and can or logistical). It is further supported by recent trials be watched in real time. The most used application that show that we should try and minimize the suris measurement of oxygen saturation.[15]

Blue dye and ICG could be used as agents for PAI A common hurdle to try and establish a new methwithout agent to lessen the burden on clinicians and countries due to their costs and availability. patients.

Some studies have shown good results from the to the axilla. There is increasing interest in noncombination of PAI with other traditional imaging, operative assessment. A lot of the techniques we such as the US. This can lead to exploited images have mentioned have great potential but would reto visualise the accumulation of contrast.

Using PAI can help identify sentinel node and facil- References itate image guided biopsy pre-operatively.

There is clearly a great scope for exploration in the future.

Radiomics

Radiomics uses models based on dynamic contrastenhanced MRI (DCE-MRI). Recent studies have shown that there is good performance in prediction of metastases using these models. These models 3. have different performance in prediction but they are all showing good initial results. [16] This is a quickly evolving area of medicine that will definitely play some major part in the future.

Discussion

Sentinel node biopsy has without the doubt 4. Bove S, Fragomeni SM, Romito A, DI Giorgio

pansion that generates acoustic waves. The fre- changed the management of breast cancer. The gical interventions in the axilla.

and they differ in the depth of the tissue. Other ma- od is lack of good quality of evidence. We are genta have been assessed such as gold based parti- missing randomised controlled trials or costcles or carbon nanotubes conjugated with ICG. effectiveness studies. Some of these techniques are Some attempts have been made to perform PAI going to be even less achievable in the low income

> There is definitely a shift in the operative approach quire future development and re-evaluation.

- 1. Veronesi, U. · Paganelli, G. · Viale, G. et al., A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer, N Engl J Med. 2003; 349:546-553
- 2. Kurosumi M. Recent trends concerning sentinel lymph node biopsy for breast cancer and new methods for detection of metastasis. Breast Cancer. 2007;14(4):341. doi: 10.2325/ jbcs.14.341. PMID: 17986797.
 - Xu L, Yang J, Du Z, Liang F, Xie Y, Long Q, Chen J, Zeng H, Lv Q. Redefining Criteria to Ensure Adequate Sentinel Lymph Node Biopsy With Dual Tracer for Breast Cancer. Front Oncol. 2020 Dec 3;10:588067. doi: 10.3389/ fonc.2020.588067. PMID: 33344240; PMCID: PMC7744718.

- D, Rinaldi P, Pagliara D, Verri D, Romito I, Paris I, Tagliaferri L, Marazzi F, Visconti G, Franceschini G, Masetti R, Garganese G. Techniques for sentinel node biopsy in breast cancer. 8. Minerva Surg. 2021 Dec;76(6):550-563. doi: 10.23736/S2724-5691.21.09002-X. Epub 2021 Aug 2. PMID: 34338468.
- 5. Li J, Chen X, Qi M, Li Y. Sentinel lymph node biopsy mapped with methylene blue dye alone in patients with breast cancer: A systematic review and meta-analysis. PLoS One. 2018 Sep 20;13(9):e0204364. doi: 10.1371/ journal.pone.0204364. PMID: PMCID: PMC6147575.
- 6. Donker M, van Tienhoven G, Straver ME, Meijnen P, van de Velde CJ, Mansel RE, Cataliotti L, Westenberg AH, Klinkenbijl JH, Orzalesi L, Bouma WH, van der Mijle HC, Nieu-NJ, de Graaf PW, van Dalen T, Marinelli A, Rijna H, Snoj M, Bundred NJ, Merkus JW, Belkacemi Y, Petignat P, Schinagl DA, Coens C, Messina CG, Bogaerts J, Rutgers EJ. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet 11. Yadav SK, Bharath S, Sharma D, Srivastava A, Oncol. 2014 Nov;15(12):1303-10. doi: 10.1016/ S1470-2045(14)70460-7. Epub 2014 Oct 15. PMID: 25439688; PMCID: PMC4291166.
- 7. Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM, Yiangou C, Horgan K, Bundred N, Monypenny I, England D, Sibbering M, Abdullah TI, Barr L, Chetty U, Sinized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst. 2006 May 3;98(9):599-609. doi:

- 10.1093/jnci/djj158. Erratum in: J Natl Cancer Inst. 2006 Jun 21;98(12):876. PMID: 16670385.
- Kurylcio A, Pelc Z, Skórzewska M, Rawicz-Pruszyński K, Mlak R, Gęca K, Sędłak K, Kurylcio P, Małecka-Massalska T, Polkowski W. Superparamagnetic Iron Oxide for Identifying Sentinel Lymph Node in Breast Cancer after Neoadjuvant Chemotherapy: Feasibility Study. J Clin Med. 2021 Jul 16;10(14):3149. doi: 10.3390/jcm10143149. PMID: 34300315; PMCID: PMC8305632.
- 30235340; 9. Chapman MC, Lee AY, Hayward JH, Joe BN, Price ER. Superparamagnetic Iron Oxide Sentinel Node Tracer Injection: Effects on Breast MRI Quality. J Breast Imaging. 2020 Nov 21;2 (6):577-582. doi: 10.1093/jbi/wbaa083. PMID: 38424862.
- wenhuijzen GA, Veltkamp SC, Slaets L, Duez 10. Coibion M, Olivier F, Courtois A, Maes N, Jossa V, Jerusalem G. A Randomized Prospective Non-Inferiority Trial of Sentinel Lymph Node Biopsy in Early Breast Cancer: Blue Dye Compared with Indocyanine Green Fluorescence Tracer. Cancers (Basel). 2022 Feb 10;14 (4):888. doi: 10.3390/cancers14040888. PMID: 35205636; PMCID: PMC8870473.
 - Jha CK, Agarwal G, Khadka S, Singh M, Shekhar S, Goyal A. A systematic review and metaanalysis of diagnostic performance of fluorescein-guided sentinel lymph node biopsy in early breast cancer. Breast Cancer Res Treat. 2024 doi: 10.1007/s10549-024-Jul;206(1):19-30. 07310-0. Epub 2024 Apr 26. PMID: 38668856.
- nett DH, Fleissig A, Clarke D, Ell PJ. Random- 12. Natsiopoulos I, Intzes S, Liappis T, Zarampoukas K, Zarampoukas T, Zacharopoulou V, Papazisis K. Axillary Lymph Node Tattooing and Targeted Axillary Dissection in Breast Cancer Patients Who Presented as cN+ Before Neo-

AJMCRR, 2025 Volume 4 | Issue 10 | 7 of 8

- Treatment. Clin Breast Cancer. 2019 Jun;19 (3):208-215. doi: 10.1016/j.clbc.2019.01.013. Epub 2019 Feb 6. PMID: 30922804.
- 13. Kamata A, Miyamae T, Koizumi M, Kohei H, Sarukawa H, Nemoto H, Hino K. Using Computed Tomography Lymphography for Mapping of Sentinel Lymph Nodes in Patients with 16. Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, Breast Cancer. J Clin Imaging Sci. 2021 Aug 14;11:43. doi: 10.25259/JCIS 33 2021. PMID: 34513207; PMCID: PMC8422530.
- 14. Machado P, Liu JB, Needleman L, Lazar M, Willis AI, Brill K, Nazarian S, Berger A, Forsberg F. Sentinel Lymph Node Identification in Patients With Breast Cancer Using Lymphosonography. Ultrasound Med Biol. 2023 Feb;49(2):616-625. doi: 10.1016/ j.ultrasmedbio.2022.10.020. Epub 2022 Nov 26. PMID: 36446688; PMCID: PMC9943072.
- adjuvant Chemotherapy and Became cN0 After 15. Liu S, Wang H, Zhang C, Dong J, Liu S, Xu R, Tian C. In Vivo Photoacoustic Sentinel Lymph Node Imaging Using Clinically-Approved Carbon Nanoparticles. IEEE Trans Biomed Eng. 2020 Jul;67(7):2033-2042. doi: 10.1109/ TBME.2019.2953743. Epub 2019 Nov 15. PMID: 31751215.
 - Gu Y, Li A, Lu N, He Z, Yang Y, Chen K, Ma J, Li C, Ma M, Li X, Zhang R, Zhong H, Ou Q, Zhang Y, He Y, Li G, Wu Z, Su F, Song E, Yao H. Development and Validation of a Preoperative Magnetic Resonance Imaging Radiomics-Based Signature to Predict Axillary Lymph Node Metastasis and Disease-Free Survival in Patients With Early-Stage Breast Cancer. JA-MA Netw Open. 2020 Dec 1;3(12):e2028086. 10.1001/jamanetworkopen.2020.28086. PMID: 33289845; PMCID: PMC7724560.

AJMCRR, 2025 Volume 4 | Issue 10 | 8 of 8