Research Article ISSN 2835-6276

American Journal of Medical and Clinical Research & Reviews

AUTISM/PICA and H. PYLORI: CLUES AND CURES(?)

Dean Alexander, Ron Frank

*Correspondence: Dean Alexander

Received: 10 Nov 2025; Accepted: 15 Nov 2025; Published: 25 Nov 2025

Citation: Dean Alexander. AUTISM/PICA and H. PYLORI: CLUES AND CURES(?). AJMCRR. 2025; 4(11): 1-6.

Cigar-smoking detective Lt. Frank Columbo, drugs. played brilliantly by Peter Falk, solves each challenging case in the closing moments of the sus- Pica is the compulsive, recurrent consumption of terms.

much.

penseful drama. We watch as clues are uncovered – nonnutritive items, often benign, but sometimes awaiting Columbo to put the final puzzle pieces lethal. Ingested items include beads, buttons, rubber together. Researchers may not be quite ready for a gloves, socks, strings, cigarette butts, paper, plas-"Eureka" moment for autism/pica, but we believe tics, pop tops, trash, small rocks, bark, dirt/soil, fewe're getting closer. H. Pylori is a prime suspect in ces, plants, grass, leaves, mushrooms, and twigs this story, and pica is often found at the scene of (Alexander, Lunde & Berger, 2020). Other reports the crime. Let's examine the clues after defining include sharp objects such as nails, pins, and broken glass as well as poisonous substances such as paint chips and swimming pool chlorine tablets Columbo: Excuse me, Sir – can I borrow that pen- (Trajkovski, 2018). In persons with developmental cil? I need to make a few notes. Thank you very disabilities, estimates range from 15.5% (Lofts, Schroeder & Maier, 1990) to 23.2% (Fields, Soke, Reynalds, et al., 2019) and higher. Behavioral ap-H. Pylori is a bacterial infection that affects almost proaches to reducing pica have enjoyed some short-50% of the worldwide population, and is a major term successes, but maintenance over time, genercause of stomach and upper intestinal disorders, alization across different settings, costly staff trainincluding ulcers of the stomach and duodenum (the ing, and setting restrictions for the pica client and beginning of the small intestine), gastritis, and peers all remain challenging issues (Alexander, stomach cancer. H. Pylori is correlated with chronic 2024). These limitations have widened the doorway inflammation, causing structural changes in gastric for biological interventions such as nutrition, bimucosa. Compromise of the GI mucosa is a major otics, and focus on healthful and harmful bacteria health setback (Holmgren & Czerkinsky, 2005) (in in the gut/microbiome. Micronutrients such as iron Nabavi-Rad, A., Azizi, M., Jamshidizadeah, S. et (Alexander, 2024; Johnson, Roesser, Hyman, et al., al., 2022). Standard treatment includes multiple an- 2010; Swift, Paquette, Davidson 1999) and zinc tibiotics and powerful stomach-acid suppressor (Lofts, et al., 1990) have a demonstrated role. A meta-analysis of pica and micronutrient status showed that zinc plasma concentrations were significantly lower in clients with pica compared to controls (Miao, Young & Golden, 2015). It follows that zinc supplementation would reduce pica by addressing zinc deficiency. This was confirmed by Lofts and his colleagues. (For other metrics see Alexander, 2024.)

Columbo: A lot of "doc talk." Please bear with me.

CLUES(!):

A common denominator for H. Pylori and pica hypothesized here is microbiome-mediated gastrointestinal inflammation (dysbiosis). Clues may be found in patterns of overlapping symptoms and diseases for the two disorders. Table 1 shows the association between pica and GI symptoms such as abdominal pain, diarrhea, and vomiting for clients with Autism Syndrome Disorder (ASD) and nonautistic developmental disability.

TABLE 1: Percent occurrence for GI symptoms for ASD and nonautistic developmentally disabled clients with and without Pica

	ASD	ASD	ASD	ASD	ASD	ASD	Dev.Dis.	Dev.Dis.
	Pica	No Pica	Pica	No Pica	Pica	No Pica	Pica	No Pica
	(a)	(a)	(b)	(b)	(c)	(c)	(c)	(c)
Number of clients	1011	1280	17	15	282	962	132	1461
Age range	3-62	3-62	24-58	24-58	2-5	2-5	2-5	2-5
Percent Occurrence								
Abdominal Pain	41	30	29	0				
Alternating constipa-			29	7				
tion/diarrhea								
Constipation			94	80	30.8	28.5	27.3	18.8
Diarrhea	39	27			17.4	11.9	15.2	5.5
GERD	24	15	35	7				
Irritable Bowel Syn-	12	7						
drome								
Stooling, pain on					18.8	16.2	19.7	11.1
Stools, loose	37	25			22	16.2	22.7	7.7
Stools, smelly	44	29						
Vomiting			41	27	7.8	3.8	11.4	2.9
Range	12-44	7-30	29-94	0-80	7.8-	3.8-28.5	11.4-	2.9-18.8
					30.8		27.3	
Median (middle value)	38	26	35	7	18.8	16.2	19.7	7.7

- a) Edelson (2020)
- b) Alexander, Lunde, Berger (2020
- c) Fields, Soke, Reynolds (2020)

AJMCRR, 2025 Volume 4 | Issue 11 | 2 of 6

and see how often they all come up heads!)

et al., 2020).

testinal diseases in clients with ASD

	Pica	No	Pica/No Pica
		Pica	Ratio
	22	2.1	
Number of	33	31	
clients			
Age range	24-58		
Percent			
Occurrence			
Aerophagia	12	0	100
Colitis	15	6	2.5
Duodenitis	27	13	2
Esophagitis	39	13	3
Gastritis	58	26	2.2
GERD	30	23	1.3
H. Pylori	15	0	100
Hiatal Hernia	15	6	2.5
Intestinal	9	3	3
Blockage			
Ulcer	15	3	5
Range	9-58	0-26	
Median	15	6	3.5
(middle value)			

Alexander, Lunde, Berger (2020)

Similarly, such symptoms are reported for H. Pylo- Diseases are, of course, even more clinically signifri. In extensive reports from both the Autism Re- icant than symptoms, but here highly statistically search Institute, 2020 and the Fields study, 2020, significant as well. The percentages for all ten of every one of the 16 GI symptoms that they studied the most frequently occurring GI diseases were was more frequent for those with pica than for higher for clients with pica disorder. This included those without pica: Clinically significant and statis- H. Pylori itself – occurring in 15% in the combined tically significant. (Flip a coin repeatedly 16 times pica group versus *none* of the clients without pica; ulcer occurring five times more often in the combined pica groups; and gastritis, by far the most This pattern of overlap for pica and H. Pylori is al-frequently occurring disease at 58% compared to so suggested for GI diseases in Table 2 (Alexander, 26% of those without pica. These are signposts for H. Pylori infection.

TABLE 2: Association between pica and gastroin- Columbo: Folks, like this pencil, I'm not as sharp as I used to be. But I still have a nose for these things. To be on the safe side, I commissioned two kids [UCLA pre-doctoral psych interns] to gather the evidence and eliminate any al pastori apriori bias. 16 out of 16 symptoms! Ten out of ten diseases! Holy s...moke. If I start believing in coincidences like that, I'll have to find another line of work.

CURES(?)

Historically, three studies demonstrated experimentally a relationship between pica and nutrition: Lofts, et al., 1990, noted above, using zinc chelated for improved absorption; Bugle & Rubin 1993, employing a supplemental liquid diet containing all essential nutrients; and Pace & Toyer, 2013, employing a common multivitamin. Fast forward to 2015. Ozturk, Kurt, Ozgeris, et al., demonstrated that serum zinc levels were significantly higher and serum magnesium levels significantly lower in H. Pylori positive children than those of controls. If H. Pylori is in play, chelated magnesium could then be expected to correct the serum deficiency. However, magnesium is not reported to suppress pica. Ordinarily, zinc in any of eight current forms would be

Pylori is already associated with significantly high Ozgeris, et al. 2015) zinc levels. In fact, adding zinc to reduce pica is likely to worsen H. Pylori: H. Pylori requires zinc Columbo: Uh-oh- Catch 22... to induce inflammatory activity and has evolved Zinc deficiency makes the host more vulnerable to at the expense of the other.

about now. And perhaps we have one. Japanese in the first place? researchers, e.g. Ueda, Ueyama, Oka, et al., 2009, The integrity of the intestinal barrier is tied to conage it has caused, as written up by Michael microbiome and cause diarrhea and inflammation. Downey in Life Extension Magazine, 2024 (physician reviewed, 53 references). Zinc-carnosine Columbo: Time to call in the lab guys and stat gu-DSMZ 17648 has also been shown to reduce H. Pylori bacteria (Mehling & Busjahn, 2013). Lacto- That's it for now... bacillus reuteri binds to H. Pylori, carrying them and helps prevent stomach cancer. Together this gastroenterologist and made my mother happy! non-drug treatment package safely inhibits H. Pylori, lowers inflammation and heals the stomach lin- References ing, relieves stomach pain related to gastritis and 1. Alexander, D.D. Pica and autism/pica in develpeptic ulcer disease, and prevents gastric cancers related to H. Pylori.

Columbo: Yowzers!

Alternatively, zinc has also been reported to be DE- 2. Alexander, D. D., Lunde, S. E., & Berger, D. E. FICIENT – as opposed to ELEVATED – in the presence of P. Pylori. (see Sempertegui, Diaz, Mejia, et al. 2007; Elsaghier, Aal, Faddan, et al.

contraindicated for managing H. Pylori since H. 2020; Zhang, Han, Gu, et al 2023; Ozturk, Kurt,

three zinc transport systems to survive high levels the inflammation associated with H. Pylori infecof zinc (Haley & Gaddy, 2015) (in Nabavi-Rad, et tion. Higher dietary zinc is associated with a lower al.) Hence, the dilemna of addressing one problem likelihood of infection and a reduced risk of H. Pylori seropositivity.

We would surely applaud a "Columbo moment" Columbo: Seropositivity?? Why didn't you say so

have developed a combination of zinc and carno- suming the right amount of zinc. An over- or unsine that removes H. Pylori while healing the dam- derabundance of zinc can adversely impact the gut

protects the stomach wall from corrosive contents, rus! So to wrap it up for now, this whole kerfuffle "sticks" to ulcers to quickly promote healing, inhib- may boil down to (1) the benefit of Zinc Carnosine its dangerous H. Pylori, and treats gut permeability, and Lactobacillus Reuteri versus adjusting the level i.e. leaky gut, by strengthening the intestinal barri- of dietary zinc or zinc supplement, and (2) will that er. A specific probiotic strain, lactobacillus reuteri same zinc conjointly reduce pica and its correlates?

out of the body, which reduces the load of infection Columbo: Just one more thing. Should abeen a

- opmental disability ports of entry. American Journal of Medical and Clinical Research and Reviews, 2024;3(6):1-22 June 27. Doi: https:// doi.org/10.58372/2835-6276.1184
 - (2020). Gastrointestinal tract symptomatology in adults with pica and autism. Autism and Developmental Disorders, 18(4), 3-12. https://

AJMCRR, 2025 Volume 4 | Issue 11 | 4 of 6

- doi.org/10.17759/autdd.2020180401
- 3. Bugle, C. & Rubin, H.B. (1993). Effects of a of three cases. Research and Developmental Disabilities, 14(6), 445-456.
- 4. Downey, M. Reduce risk of stomach ulcers and gastritis. Life Extension Magazine, 2018, Oct., 1-11.
- E2) Autism Research Institute, San Diego, CA
- 6. Elsaghier, A., Aal, F., Faddan, N., et al. Serum level of some micronutrients in children infected -with Helicobacter pylori Egyptian Pediatric Association Gazette, 68(4), 2020 Feb 3. https:// 13. Mehling, H., Busjahn, A. Non-viable lactobadoi.org/10.1186/s43054-020-0017-3
- 7. Fields, V. L., Soke, G. N., Reynolds, A., Tian, L. H., Wiggins, L., Maenner, M., DiGuiseppi, C., Kral, T. V. E., Hightshoe, K., Ladd-Acosta, 14. Miao, D., Young, S. L., & Golden, C. D. C., & Schieve, L. A. (2019). Prevalence of pica in pre-schoolers with and without autistic spectrum disorder. Study to explore early development - United States, 2008-2016. [Paper presentation]. Epidemic Intelligence Service 15. Nabavi-Rad, A., Azizi, M., Jamshidizadeh, S., Conference, Atlanta, GA, United States.
- 8. Fields, V. L., Soke, G. N., Reynolds, A., Tian, L. H., Wiggins, L., Maenner, M., DiGuiseppi, C., Kral, T. V. E., Hightshoe, K., Ladd-Acosta, C., & Schieve, L. A. (2020). Association between pica and gastrointestinal autistic disorbility and Health Journal, 14(3), Article 101052. https://doi.org/10.1016/ j.dhjo.2020.101052.
- 9. Haley, K.P., Gaddy, J.A. Metalloregulation of sis, Frontiers in Microbiology. 2015; 6:p. 911. Doi:10:3389/fmicb.2015.00911.
- 10. Holmgren, J., Czerkinsky, C. Mucosal immunity and vaccines. Nature Medicine. 2005;

- 11Supplement 4): S45-S53. Doi: 10.1038/ nm1213.
- nutritional supplement on coprophagia: A study 11. Johnson, K., Roesser, J., Hyman, S., Cole, L., Diehl, A., Murray, C., Smith, Tristram. (2010). Low ferritin in children with ASD: Association with pica and ADHD symptoms. Conference: International Meeting for Autism Research 2010.
- 5. Edelson, S.M. (2020). Parent report data (form 12. Lofts, R.H., Schroeder, S.R. & Maier, R.H. (1990). Effects of serum zinc supplementation on pica behavior of persons with mental retardation. American Journal on Mental Retardation, 95, 103-109.
 - cillus reuteri DSMZ 17648 (Pylopass) as a new approach to Helicobacter pylori control in humans. Nutrients. 2013;5(8):3062-73.
 - (2015). A meta-analysis of pica and micronutrient status. American Journal of Human Biolo-84-93. https://doi.org/10.1002/ gy, 27(1), ajhb.22598.
 - et al. The effects of vitamins and micronutrients on Helicobacter pylori pathogenicity, survival, and eradication: a crosstalk between micronutrients and immune system. Journal of Immu-Research. 2022 March nology 16; 2022:4713684. Doi: 10.1155/2022/4713684.
 - der: Study to explore early development. Disa- 16. Ozturk, N., Kurt N., Ozgeris, F.B., et al. Serum zinc, copper, magnesium and selenium levels in children with helicobactor pylori infection. The Eurasian Journal of Medicine. 2015; 47(2):126-129. Doi: 10.5152/eurasianjmed.2015.104.
 - Helicobacter Pylori physiology and pathogene- 17. Pace, G. M., & Toyer, E. A. (2013). The effects of a vitamin supplement on the pica of a child with severe mental retardation. The Journal of Applied Behavior Analysis, 33(4), 619-622. https://doi.org/10.1901/jaba.2000.33-619.

Volume 4 | Issue 11 | 5 of 6 AJMCRR, 2025

- 18. Sempertegui, F., Diaz, M., Moro, O., et al. Low concentrations of zinc in gastric mucosa are associated with increased severity of Helilibrary of Medicine, 2007 Feb;12(1):43-8. DOI: 10.1111/j.1523-5378.2007.00476.x
- 19. Swift, I., Paquette, D., Davison, K., Saeed, H. (1999). Pica and trace metal deficiencies in British Journal of Development Disabilities, 45:89. 111-117 https:// doi.org/10.1179/096979599799155948
- 20. Trajkovski, V. (2018). Health condition in persons with autism-spectrum disorders. Journal

- for ReAttach Therapy and Developmental Diversities. 2019 Feb 17; 1(2):112-124 https:// doi.org/10.26407/2018jrtdd.1.12.
- cobacter pylori-induced inflammation. National 21. Ueda, K., Ueyama, T., Oka, M., et al. Polaprezinc (Zinc L-carnosine) is a potent inducer of anti-oxidative stress enzyme, heme oxygenase (HO)-1 - a new mechanism of gastric mucosal protection. J Pharacol Sci. 2009;110(3):285-94.
- adults with developmental disabilities, The 22. Zhang, K., Han, Y., Gu, F., et al. Association between dietary zinc intake and Helicobacter pylori seropositivity in US adults: National Health and Nutrition Examination Survey Frontiers in Nutrition, 2023 September, 10-(23), https://doi.org/10.3389/fnut.2023.1243908

AJMCRR, 2025 Volume 4 | Issue 11 | 6 of 6