Literature review ISSN 2835-6276

American Journal of Medical and Clinical Research & Reviews

Role of First- and Second-Trimester Uterine Artery Doppler in Predicting Adverse Pregnancy Outcomes: A Review of Literature

Dr Rizwana, Dr Kavitha Krishanan Vandanath, Professor Hasib Ahmed

*Correspondence: Rizwana

Received: 30 Oct 2025; Accepted: 05 Nov 2025; Published: 15 Nov 2025

Citation: Rizwana. Role of First- and Second-Trimester Uterine Artery Doppler in Predicting Adverse Pregnancy Outcomes: A Review of Literature. AJMCRR. 2025; 4(11): 1-17.

Abstract

Background: Uterine artery Doppler velocimetry (UADV) is a non-invasive tool for assessing uteroplacental blood flow and identifying pregnancies at risk for pre-eclampsia (PE), fetal growth restriction (FGR), and small for gestational age (SGA). While abnormal indices such as elevated pulsatility index (PI), resistance index (RI), and persistent bilateral notching have been consistently associated with placental insufficiency, the clinical value of UADV depends on the timing of assessment, threshold definitions, and integration with other screening modalities.

Methods: This review synthesises evidence from eight high-quality studies published between 1998 and 2023, encompassing large multicentre prospective cohorts, randomised controlled trials, and meta-analyses. The studies varied in gestational age at Doppler assessment (first trimester, mid-trimester, and serial approaches), measurement technique (transabdominal or transvaginal), and criteria for abnormality (centile-based thresholds or fixed cut-offs). Outcomes assessed included PE, FGR, SGA, and composite maternal-fetal morbidity.

Results: Mid-trimester UADV demonstrated the strongest standalone predictive value, with detection rates of up to 69–93% for severe early-onset PE and FGR and ~60% for early PE/IUGR in a large randomised trial ^{1,2}. First-trimester Doppler alone had modest sensitivity for overall PE and SGA but was more predictive of severe phenotypes, with Martin et al. (2001) reporting 60% detection for PE requiring delivery before 32 weeks. Incorporation into multimodal algorithms, as in the ASPRE trial, achieved 76.7% detection of preterm PE at a 10% false-positive rate and, when combined with aspirin prophylaxis, reduced preterm PE incidence by over 60% ³. Smaller cohort studies and a large meta-analysis reinforced the predictive role of UADV across gestation, with the highest effect sizes in mid-to-late pregnancy.

Conclusion: The evidence consistently supports UADV as a valuable screening tool, particularly for early-onset, severe placental disease. Mid-trimester measurement offers the best standalone perfor-

AJMCRR, 2025 Volume 4 | Issue 11 | 1 of 17

mance, while first-trimester assessment gains maximum utility within integrated risk models that link detection to effective interventions. Limitations include heterogeneity in technique, population differences, and the limited impact of Doppler-only strategies on outcomes without accompanying treatment pathways. This synthesis underpins the rationale for including UADV in structured screening programmes and informs the methodological approach of the present thesis.

Keywords: Uterine artery Doppler, pre-eclampsia, fetal growth restriction, small for gestational age, screening, prediction, pregnancy outcomes.

Introduction

Hypertensive disorders of pregnancy, fetal growth assess the adequacy of uteroplacental circulation ^{4,7}. restriction (FGR), and small-for-gestational-age By analysing blood flow waveforms in the uterine (SGA) infants collectively account for a significant arteries and quantifying indices such as the pulsatilproportion of global maternal and perinatal morbid- ity index (PI), resistance index (RI), systolity and mortality 4,5. Preeclampsia (PE), a hallmark diastolic (S/D) ratio, and the presence of early diashypertensive disorder, affects 2-8% of pregnancies tolic notching, UADV allows for early identificaglobally and remains one of the leading causes of tion of pregnancies at risk of adverse outcomes ^{5,6}. medically indicated preterm births and maternal These Doppler parameters serve as surrogates for deaths, particularly in low- and middle-income vascular impedance; elevated PI or RI and the percountries (LMICs), where access to consistent ante-sistence of bilateral notching suggest increased renatal care is often inadequate ⁴.

FGR and SGA, while clinically distinct entities, fusion ⁴. This vascular remodelling proceeds in two istration (4,6). stages: the first involves invasion into the decidua tions associated with PE, FGR, and SGA ^{5,6}.

emerged as a valuable, non-invasive modality to sistance in the uterine arteries, indicative of incomplete spiral artery remodelling (5;8).

share a common etiological basis rooted in defec- The utility of UADV lies in its ability to predict tive placentation and impaired uteroplacental perfu- pregnancy complications even before clinical sion 4,5. Normally, during early pregnancy, extravil- symptoms manifest 4. Studies have shown that ablous trophoblasts invade the spiral arteries of the normal uterine artery Doppler indices precede the uterus, converting them from narrow, high- onset of PE and FGR by several weeks, offering a resistance vessels into dilated, low-resistance con- critical window for timely surveillance and prophyduits that facilitate adequate placental and fetal per- lactic interventions such as low-dose aspirin admin-

before 12 weeks, and the second involves deeper Importantly, the predictive accuracy of UADV is penetration into the myometrium between 12 and highly dependent on the gestational age at which it 16 weeks of gestation ^{4,5}. Failure of this physiologi- is performed (4,7). First-trimester UADV, typically cal transformation underlies many of the complica- between 11 and 14 weeks, offers an early opportunity to identify high-risk pregnancies (4). They demonstrated that uterine artery Doppler indices Uterine artery Doppler velocimetry (UADV) has obtained during the first trimester could predict a

sensitivity remained moderate when used in isola- sistance remains elevated beyond the second trition (4). A meta-analysis by Velauthar et al., in- mester, it often signals underlying placental insufvolving over 55,000 women, confirmed that elevat-ficiency (8). This study found that pregnancies ed PI and bilateral notching during the first tri- complicated by PE often showed persistent Dopmester were significantly associated with adverse pler abnormalities and that similar findings in suboutcomes, but also emphasized the limitations of sequent pregnancies were linked to a higher recur-UADV alone (5).

have explored combining UADV with maternal pertensive disorders (8). serum biomarkers and clinical risk factors (6). They tion (5,6).

In contrast to first-trimester assessments, secondidentification of deviations from normal uterine tured training and quality control systems (4). artery resistance trends (9).

spectrum of pregnancy complications, although tinued placental vascular remodelling (9). If rerence risk (8). This reinforces the importance of Doppler as both a diagnostic and prognostic tool, To enhance predictive performance, several studies particularly for women with a prior history of hy-


proposed a model that incorporated uterine artery Beyond prediction of PE and FGR, UADV has also PI with maternal characteristics and demonstrated been evaluated in the context of recurrent pregnanimproved predictive capacity for PE and SGA cy loss (RPL) (10). They investigated the role of the when compared to Doppler use alone (6). These uterine radial artery resistance index and found it findings support the concept that a multi- to be predictive of reproductive outcomes in womparametric approach, rather than reliance on a sin- en with RPL and thrombophilia (10). This highgle modality, yields more accurate risk stratifica- lights the expanding utility of Doppler assessment in broader reproductive medicine contexts, beyond conventional obstetrics (11).

trimester UADV—especially between 22 and 24 Despite the growing body of supportive evidence, weeks—has shown greater diagnostic accuracy in the translation of UADV into routine obstetric predicting early-onset PE and FGR (7). This study practice faces several challenges (4). One major reported that uterine artery PI > 95th percentile barrier is the lack of standardized normative values measured at 23-24 weeks was associated with a across diverse populations (9). Many Doppler refsignificantly higher risk of adverse pregnancy out- erence ranges are derived from Caucasian cohorts, comes in high-risk populations (7). The study ad- which may not be applicable in LMIC settings vocated for second-trimester UADV as an effective such as India or Sub-Saharan Africa, where basetriage tool to select candidates for intensified ante- line vascular physiology and maternal health pronatal surveillance (7). Similarly, Acharya et al. es-files differ significantly (9,11). Additionally, variatablished reference ranges for Doppler indices dur- bility in operator skill and equipment quality can ing the second half of pregnancy, facilitating the affect measurement reliability, necessitating struc-

Nevertheless, the scalability and affordability of The natural decline in uterine artery impedance Doppler technology make it a highly attractive tool typically observed during pregnancy is due to confor resource-constrained settings (4). Portable deform interpretation, offer promising solutions for tient extending UADV access to peripheral centres (4). With appropriate contextual adaptation and inte- A. Nonpregnant patient. B. 1st trimester. C. 2 UADV could serve as a cornerstone of prenatal 2020) 12 risk screening in LMICs (4).


UADV provides a physiologically grounded, evidence-based, and cost-effective means of identifying pregnancies at heightened risk for PE, FGR, and SGA (4;5). While its predictive performance varies with gestational age and population characteristics, its utility is most pronounced when integrated into multi-modal screening frameworks (5). The next frontier in Doppler-based surveillance lies in the regional validation of indices and broader policy integration, particularly in settings where Fig 2 Uterine artery notching in doppler (Marimaternal and fetal health burdens remain high (9). Given the global push toward personalised, preven- The primary aim of this systematic review is to and babies alike (4).

Fig 1 depicts the normal uterine artery doppler ve- small-for-gestational-age (SGA) outcomes. locimetry in non pregnant patient as well as in first, second and third trimester UADV in pregnant patients .Fig 2 depicts uterine artery notching 1. What is the diagnostic accuracy of uterine arwhich suggest increase in uterine artery resistance which is an indication of spiral artery dysfunction.

vices, coupled with recent advancements in tele- Fig. 1. Depiction of Uterine artery Doppler ulmedicine and artificial intelligence-assisted wave- trasound in the nonpregnant and pregnant pa-

gration into national antenatal care protocols, nd trimester. D. 3rd trimester (Mariana et al,

ana et al , 2020) ¹²

tive obstetrics, UADV has the potential to bridge evaluate the clinical utility and predictive perforgaps in care and improve outcomes for mothers mance of uterine artery Doppler velocimetry (UADV) in identifying pregnancies at risk for preeclampsia, fetal growth restriction (FGR), and

Research questions:

- tery Doppler velocimetry (pulsatility index, resistance index, and diastolic notching) in predicting preeclampsia, fetal growth restriction, and small-for-gestational-age outcomes?
- 2. How does the gestational age at the time of Doppler assessment influence its predictive effectiveness for adverse pregnancy outcomes?
- 3. Does integrating uterine artery Doppler indices with maternal risk factors improve the overall performance of models screening for

preeclampsia, fetal growth restriction, and small **Study Selection** -for-gestational-age infants?

Methods **Search Strategy**

A structured literature search was conducted to the identify studies evaluating the role of uterine artery (prospective cohort, cross-sectional, RCT, or meta-Doppler velocimetry (UADV) in predicting analysis); population of pregnant women undergopreeclampsia (PE), fetal growth restriction (FGR), ing UADV between 11 and 24 weeks' gestation; and small-for-gestational-age (SGA) outcomes. The intervention involving transvaginal or transsearch was performed in PubMed, Scopus, EM- abdominal assessment of pulsatility index (PI), re-BASE, and COCHRANE for publications from sistance index (RI), and/or bilateral notching; out-January 1, 1998, to July 31, 2025. Search terms comes including PE, FGR, or SGA with correlation combined free text and MeSH keywords as follows: to Doppler parameters; published in English; and ("Uterine artery Doppler" OR "uterine artery veloc- indexed in PubMed or Scopus. imetry") AND ("Pulsatility Index" OR "Resistance non-peer-reviewed sources were excluded.

Information Sources

Four electronic databases, PubMed, Scopus, EM- analysis. BASE AND COHRANE were selected for their comprehensive coverage of peer-reviewed litera- Data Collection ture in obstetrics, maternal-fetal medicine, and di- Data collection was standardized using a predeliterature or unpublished sources were considered.

Independently Reviewed and screened all retrieved citations. Titles and abstracts were first assessed for relevance, followed by full-text review to determine eligibility. Studies were included if they met following criteria: original

Index" OR "Notching") AND ("Preeclampsia" OR Studies were excluded if they were editorials, opin-"Fetal Growth Restriction" OR "Small for Gesta- ion pieces, case reports, conference abstracts, anitional Age"). Filters were applied to restrict results mal studies, or basic science reports without clinito human studies, English language, and clinical cal correlation; if they lacked outcome data or Dopresearch designs, including randomised controlled pler indices; if they were in languages other than trials, cohort studies, cross-sectional studies, and English; or if they did not report gestational timing meta-analyses. The reference lists of eligible stud- of Doppler assessment. Disagreements on study ies were manually screened to identify additional inclusion were resolved by discussion or, if necesrelevant publications. Grey literature, preprints, and sary, consultation with a third reviewer. Ultimately, eight high-quality studies meeting all criteria were included, comprising a mix of prospective cohorts, RCTs, cross-sectional designs, and one meta-

agnostic imaging. Both were searched systematical- signed Microsoft Excel form, which was piloted on ly using the same search terms and filters. Refer- two studies to ensure clarity and completeness. ence lists of all shortlisted articles were also re- This form recorded study identifiers, participant viewed to capture studies not identified through the characteristics, Doppler measurement parameters, database searches. Only peer-reviewed, full-text and outcome definitions. It was designed to ensure publications in English were included, and no grey consistent recording of information across all included studies.

Data Extraction

two reviewers, capturing details such as authors, retrieved from PubMed, Scopus, Emboss and year, country, study design, sample size, gestation- Cochrane filtered for human studies published in al age at Doppler, population risk category, Dop- English between 1998 and 2023 in English. Folpler indices (PI, RI, notching), imaging mode, clin-lowing removal of duplicates (n=16), 112 unique ical outcomes (PE, FGR, SGA), and diagnostic records were screened based on titles and abstracts. performance metrics (sensitivity, specificity, pre- A total of 86 full-text articles underwent eligibility dictive values, odds ratios, and AUC). All extract- assessment. Of these, 78 were excluded due to the ed data were cross-checked for accuracy, and any following: lack of Doppler data (n=17), nondiscrepancies were resolved by consensus after re-reporting of PE/FGR/SGA outcomes (n=23), gestaviewing the source articles.

Results

Literature Search

This systematic review followed PRISMA 2020

guidelines for literature identification, screening, Data extraction was performed independently by and inclusion. An initial pool of 128 articles was tional windows outside 11-24 weeks (n=19), nonoriginal design such as editorial/commentary (n=7) / absence of validated indices like PI, RI / bilateral notching (n=12) (Table 1, Fig 3).

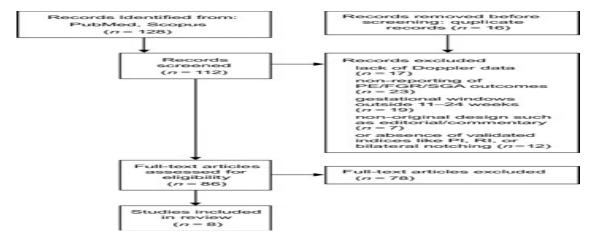


Figure 3: PRISMA 2020 Flow Diagram for Study Selection Process

	Number of Articles	Rationale
Lack of Doppler data		Articles did not perform or report uter- ine artery Doppler assessments despite discussing hypertensive disorders or FGR.
Non-reporting of PE, FGR, or SGA outcomes	23	Studies applied Doppler but did not link findings to the primary obstetric outcomes of interest.
Gestational windows outside 11–24 weeks	19	UADV assessments performed outside the first and second trimester (either too early or late), which could skew predic- tive validity.
Editorials, reviews, or commentaries (non-original work)	7	Non-primary literature was excluded as per protocol (no original data for extraction).
No validated Doppler indices reported (PI, RI, notching)	12	Doppler used, but without reporting standardized indices, cut-offs, or statistical associations.

Table 1: Exclusion Criteria Applied to Full Texts

Characteristics of Studies

The final selection included 8 high-quality studies that met all inclusion criteria. These comprised 2 randomised controlled trials (RCTs), 5 prospective cohort studies, and 1 systematic review and meta-analysis. All studies were peer-reviewed, indexed in major databases, and used standardised Doppler methodologies (Table 2).

Ref No.	Author (Year)	Title	Place	Country	Study Design	Level of Evidence	Sample Size	GA at UADV	Criteria	Outcomes	Key Strengths	Key Limita- tions	Certainty Rating
1	Kurdi et al. (1998)	The role of colour Doppler imaging of the uterine arteries at 20 weeks in the prediction of adverse pregnancy outcome	Birmingham	UK	Prospective cohort	П	1,022 (946 analysed)	20 weeks	Bilateral notches ± mean RI > 0.55	PPV ≈ 46% for major outcomes with composite	Simple, reproducible cut-offs; anomaly-scan embedment	Modest N; inter-observer notch variability; no multivariable adjustment	Moderate
2	Papageor- ghiou et al. (2001)	Uterine artery Doppler at 23 weeks in the prediction of pre-eclampsia and intrauter- ine growth restriction	Multicentre, 7 hospitals	UK	Prospective cohort	II	8,202 (7,851 outcomes)	23 weeks	PI > 95th centile; bilateral notching	Sensitivity: 69% (PE+FGR), 24% (PE without FGR), 13% (FGR); early-delivery detection up to 93%	Large pragmatic cohort; centile -based cut- offs; high technical success rate	No bi- omarkers; single time- point; limited diversity	High
3	Martin et al. (2001)	Screening for pre-eclampsia and fetal growth restriction by uterine artery Doppler at 11 -14 weeks	London, multicentre	UK	Prospective cohort	П	3,324 (3,045 outcomes)	11-14 weeks	Mean PI > 2.35 (95th centile)	Sensitivity: 27% (all PE), 60% (<32 wk PE), 11.7% (FGR)	Early gestation window; clear thresholds	Modest sensitivity; no biomarkers; limited diversity	Moderate
4	Melchiorre et al. (2009)	First-trimester uterine artery Doppler indices in the prediction of adverse outcome	London	UK	Prospective cohort	П	3,010	11–14 weeks	RI > 90th and > 95th centiles; bilateral notching	AUC: 0.60 (SGA), 0.78 (preterm IUGR)	Large, blinded, prespecified methods	Limited for general SGA; SGA defini- tion issues	High
5	Scandiuzzi et al. (2016)	Uterine artery Doppler in low-risk pregnancies: first and second trimester assessment	Minas Gerais	Brazil	Prospective cohort	П	162	11-14 weeks and 20-24 weeks	Mean RI/PI > 95th centile; combined with maternal factors	First-trimester RI > 95th OR ≈ 23 for HDP; model AUC 0.81	Integration of Doppler with maternal factors; protocolised single operator	Small sample; low event counts; low- risk cohort only	Moderate
6	García et al. (2016)	Do knowledge of uterine artery resistance in the second trimester and targeted surveillance improve pregnancy outcomes? (UTOPIA trial)	Spain	Spain	Randomised controlled trial	I	11,667	19–22 weeks	PI > 90th centile; targeted follow-up	Detection: ~59-60% early-onset PE/IUGR (FPR ~11%); no improve- ment in primary composite outcomes	Large RCT; pragmatic screening in anomaly scan	No effective treatment pathway; increased interventions without improved outcomes	High
7	Rolnik et al. (2017)	ASPRE trial: performance of screening for preterm pre-eclampsia in first trimester	Multicentre	Multiple countries	Prospective cohort within RCT screen- ing pro- gramme	I	25,797	11–13 weeks	Combined model (maternal factors, MAP, UtA-PI, PAPP -A, PIGF)	Detection: 76.7% preterm PE, 43.1% term PE, ~10% screen- positive rate	Large international dataset; linked to prevention trial; robust methodology	Needs biomarker access; requires calibration to local popula- tions	High
8	Zhi et al. (2023)	Association between uterine artery Doppler and small-for- gestational- age infants: a systematic review and meta-analysis	Multinational	Various	Systematic review/meta- analysis	I	41 studies	Any trimester	Abnormal PI/ RI or notching	$OR \approx 3$ (mid- pregnancy PI >95th) and $OR \approx 6$ (late pregnancy PI >95th) for SGA; pooled PI + 0.21, RI + 0.05	Large pooled evidence; covers all trimesters	Heterogeneity in thresholds/ equipment; study-level data	High

Table 2: Characteristics of Included Studies

Risk of Bias Assessment

The overall methodological quality of the included studies was moderate-to-high, though specific limitations warrant caution in interpretation. Large multicentre cohorts such as Papageorghiou et al. (2001) and Rolnik et al. (2017) demonstrated low selection bias through prospective recruitment, standardised Doppler protocols, and high follow-up completeness (>95%)(1,3). However, several earlier single-centre studies (13,15) had modest sample sizes and outcome counts, raising the potential for imprecision and type II error. Detection and performance metrics were generally derived from prespecified thresholds,

yet their generalisability may be constrained by tal death. specific healthcare settings and baseline risk profiles(2,3). The meta-analysis by Zhi et al. (2023) The study was significant in suggesting that Dopprovided pooled effect estimates but was limited by pler could potentially be used to guide differentiatstudy-level data and substantial heterogeneity in ed antenatal surveillance, laying the groundwork Doppler acquisition techniques(17). Across studies, for risk-based obstetric care. Strengths included its the risk of selective reporting was low, with out- integration into an existing universal visit and use comes clearly defined and statistical analyses of straightforward, reproducible Doppler threshaligned with study objectives. Nevertheless, ab- olds. However, the study was limited by modest sence of individual participant data meta-analysis numbers of adverse outcomes (21 PE cases; 57 and inconsistent adjustment for maternal risk fac- SGA cases) and the absence of adjustment for potors limit the precision of pooled estimates and may tential confounders. Additionally, notch assessment inflate observed associations in unadjusted anal- introduces potential inter-operator variability, yses.

Results of the Studies

erable variation in study design, gestational age at limits its contemporary relevance(13). 10Conduct-UADV, Doppler criteria used, and outcome defini- ed with older imaging technology, without integrations, but all consistently demonstrated that abnor- tion of maternal or biochemical markers, and fomal uterine artery Doppler findings — particularly cusing on 20-week assessment—well beyond the elevated pulsatility index (PI), resistance index window for preventive interventions—its findings (RI), and bilateral notching — were associated with are now primarily of historical importance rather increased risks of pre-eclampsia (PE), fetal growth than clinical applicability." restriction (FGR), small-for-gestational-age (SGA) neonates, and related adverse perinatal outcomes.

limiting analytical flexibility bias; nonetheless, var- exclusions. Abnormal results were defined by the iation in cut-offs (e.g., 90th vs 95th centile) and presence of bilateral notching and/or a mean RI > definitions introduces heterogeneity. 0.55. Bilateral notching was particularly predictive Blinding of outcome assessors to Doppler results of PE, with the highest positive predictive value was explicitly reported in only half of the studies, (~46%) achieved when both bilateral notching and introducing a possible measurement bias. Random- elevated RI were present (13) This simple combiised designs such as García et al. (2016) and the nation identified pregnancies at significantly ininterventional ASPRE trial reduced confounding, creased risk for PE, SGA <5th centile, and perina-

which the study did not formally quantify. Although Kurdi et al. (1998) were pivotal in demonstrating the possible role of mid-trimester uterine Across the eight included studies, there was consid- artery Doppler in stratifying antenatal care, its age

In one of the largest prospective cohorts to date, Papageorghiou et al. (2001) incorporated transvagi-Kurdi et al. (1998) explored a "one-stop" screening nal UADV into the routine 23-week anomaly scan strategy by incorporating colour Doppler UADV across seven UK maternity units, providing realinto the routine 20-week anomaly scan in 1,022 world performance data at a gestation coinciding pregnancies, of which 946 were analysable after with the completion of spiral artery remodelling.

cost of higher screen-positive rates, underlining a ies. classic trade-off between yield and false-positive burden.

rability with modern multimarker risk algo- and precision of predictive values. rithms. Another limitation of this study is that the bility and routine clinical applicability.

Martin et al. (2001) targeted an earlier screening cases, with a higher prevalence among those delivwindow, performing transabdominal UADV at 11- ering SGA infants (56% vs 43%). Median RI was 14 weeks in 3,324 pregnancies across three London also significantly higher in the SGA group (0.74 vs hospitals. Complete follow-up was available for 0.70). Receiver operating characteristic analysis 3,045 cases. The 95th centile for mean PI was 2.35, yielded an AUC of 0.60 for SGA overall, improv-

Of 8,335 eligible singleton pregnancies, usable bi- range(14). As a standalone screen, PI > 2.35 delateral waveforms were obtained in 8,202 women tected 27% of PE cases overall, with markedly bet-(technical success rate 98.4%), and complete preg- ter performance for early-onset PE requiring delivnancy outcomes were available for 7,851 (95.7%) ery before 32 weeks (60% sensitivity, specificity (1). The median mean uterine artery PI was 1.04, 88%). Detection of FGR was lower at 11.7%, with with the 95th centile threshold set at 1.63. Bilateral the most benefit again in more severe phenotypes. notching was present in 9.3% of women and unilat- These results confirmed the biological plausibility eral notching in 11.1%. Using PI > 95th centile, of impaired placentation being detectable in the detection rates were 69% for PE with concomitant first trimester but also emphasised that Doppler FGR, 24% for PE without FGR, and 13% for iso- alone — at an acceptable false-positive rate lated FGR. Sensitivities improved substantially for lacks the sensitivity needed for universal early early-onset disease requiring delivery before 32 screening. The authors noted that integration with weeks — in these severe subgroups, detection rates clinical and biochemical markers would likely imreached 93% for PE with FGR. Bilateral notching prove early predictive performance, a finding subachieved similar sensitivities to PI > 95th but at the sequently borne out by later combined-model stud-

The study was also methodologically sound, with a systematic assessment of uterine artery pulsatility This large-scale, pragmatic trial demonstrated ex- index and clear outcome definitions. However, sevcellent feasibility and provided clear centile-based eral limitations reduce its clinical applicability. The thresholds, but its single time-point design and ab- sample size was relatively small compared to later sence of biomarker integration limit direct compa- multicenter studies, limiting the statistical power

moderate predictive performance reported with Melchiorre et al. (2009) investigated the predictive limited sensitivity, particularly for late-onset PE role of first-trimester UADV in 3,010 singleton and small-for-gestational-age infants, and a rela- pregnancies at 11-14 weeks, specifically for SGA tively high false-positive rate. The study's re- and intrauterine growth restriction (IUGR) (15). striction to a single gestational age (23 weeks) and The 90th and 95th centiles for RI were 0.82 and the use of transvaginal Doppler limit its generaliza- 0.85, respectively. Overall, 9.0% of the cohort had RI values above the 90th centile and 4.5% above the 95th. Bilateral notching was present in ~45\% of with little variation across the narrow gestational ing to 0.78 for preterm IUGR, indicating greater

mixed-risk populations.

tool. The reliance on birthweight centiles (<10th) to origin may have been pooled. define SGA also introduces heterogeneity, since been misclassified.

single experienced operator and protocolised meth- therapeutic strategies. odology strengthened internal validity, though the normal later in gestation.

The strengths of this study include its prospective the clinical utility of Doppler findings rather than

discriminatory ability for severe, early placental parison of first-versus second-trimester Doppler disease. The authors noted that defining SGA sole- performance, which directly addresses the timing ly by birthweight may obscure pathophysiological of optimal screening. This comparative approach subgroups and dilute predictive accuracy — a cau- adds nuance to the literature, as much earlier work tion particularly relevant for screening studies in concentrated on high-risk cohorts. However, several limitations constrain its clinical applicability. Predictive accuracy was modest, with relatively The strength of this study lies in its prospective de- low sensitivity and specificity, suggesting that utersign and the separate analysis of SGA and IUGR, ine artery Doppler alone is insufficient for popularecognizing that not all small fetuses are growth- tion-wide screening. The reliance on perinatal outrestricted. However, predictive accuracy is modest, comes such as "adverse neonatal events" without with relatively high false-positive rates, limiting precise subclassification also weakens interpretathe test's clinical utility as a stand-alone screening bility, as outcomes of differing pathophysiological

constitutionally small but healthy infants may have García et al. (2016) reported the UTOPIA trial, a large RCT of 11,667 unselected women randomised at the 19-22-week anomaly scan to standard Scandiuzzi et al. (2016) conducted a prospective care versus disclosure of UtA-PI results (>90th cohort study in 162 low-risk Brazilian women, per-centile) and enhanced surveillance(2) Abnormal forming UADV in both the first (11–14 weeks) and screening identified ~59–60% of early-onset PE/ second (20-24 weeks) trimesters(16). Elevated IUGR cases at an 11% false-positive rate. Howevmean RI (>95th centile) in the first trimester — er, disclosure and targeted follow-up did not imeven if normalised later — remained a strong inde- prove the composite of adverse maternal and peripendent predictor of hypertensive disorders of natal outcomes compared with routine care, despite pregnancy (adjusted odds ratio \approx 23). When com- more interventions (including antenatal corticosterbined with maternal demographic and obstetric his- oids and earlier delivery). These findings underline tory, first-trimester mean RI improved the model's that effective outcome modification requires more predictive performance (AUC 0.81). The use of a than risk detection — it needs proven preventive or

small sample and low event rates limit generalisa- Its strengths lie in its robust design, large sample bility. This study importantly highlighted that some size, and focus on clinically meaningful endpoints women with early abnormal uteroplacental imped- such as pre-eclampsia, fetal growth restriction, and ance remain at risk even if Doppler indices appear perinatal morbidity. By randomizing women with abnormal uterine artery resistance indices, the study minimized selection bias and directly tested design, focus on a low-risk population, and com- just their predictive accuracy. However, the trial

since been shown to improve outcomes in high-side the specialized centres involved in the study. risk pregnancies when instituted early.

a large, prospective, multicentre trial with rigorous mation. methodology, enhancing both internal and external

also has important limitations. Despite increased ened clinical relevance, since this phenotype is monitoring in the intervention arm, there was no most strongly associated with placental dysfuncsignificant reduction in maternal or perinatal mor- tion and adverse maternal-fetal outcomes. However bidity and mortality, suggesting that surveillance the limitations should of the study includes the alone may not alter the natural course of disease screening model, while highly effective in a trial once abnormal placentation has occurred. The reli- setting, may face challenges in implementation ance on uterine artery PI >95th percentile as a across varied healthcare systems, especially in low screening threshold limited sensitivity, particularly -resource settings, due to the requirement for biofor late-onset pre-eclampsia and growth restriction. chemical assays and trained operators for Doppler Furthermore, the high false-positive rate contribut- and blood pressure standardization. Moreover, ed to unnecessary interventions and maternal anxi- while the ASPRE trial subsequently demonstrated ety, raising concerns about cost-effectiveness. Im- that aspirin prophylaxis reduced the incidence of portantly, the trial did not incorporate prophylactic preterm PE in high-risk women, questions remain strategies such as low-dose aspirin, which have about long-term generalizability, particularly out-

Zhi et al. (2023) provided the largest quantitative Rolnik et al. (2017) presented screening perfor- synthesis to date, reviewing 41 studies up to July mance data from the ASPRE trial, which screened 2022 assessing the association between abnormal 25,797 women at 11-13 weeks using a combined UADV and SGA across all trimesters(17). Abnoralgorithm of maternal characteristics, mean arterial mal PI/RI values and bilateral notching were conpressure, UtA-PI, PAPP-A, and PIGF. At a 1:100 sistently more common in SGA pregnancies. In the risk cut-off, detection rates were 76.7% for preterm second trimester, mean PI > 95th centile was asso-PE and 43.1% for term PE, with a 10% screen-ciated with approximately a threefold increased positive rate(3). Crucially, in the linked random-risk of SGA (OR \approx 3), while in the third trimester, ised trial, aspirin prophylaxis in high-risk women the risk rose to nearly sixfold (OR \approx 6). Pooled reduced the incidence of preterm PE by 62%, mean differences in PI (+0.21) and RI (+0.05) bedemonstrating that integration of UADV into a tween SGA and non-SGA pregnancies were statismultimodal early-pregnancy screening pathway tically significant. The authors concluded that can translate into clinically meaningful prevention. while UADV abnormalities are linked to SGA at any gestation, mid-pregnancy screening provides The strengths of this study are considerable. It was the most clinically actionable predictive infor-

validity. Unlike earlier single-modality studies, The strengths of this study lie in its comprehensive ASPRE provided evidence that integrated models methodology, meta-analytic design, and inclusion offer superior predictive accuracy, addressing the of recent data, which enhance the reliability of its limitations of Doppler-alone approaches. Its em- conclusions compared with single-centre observaphasis on preterm PE as an outcome also strength- tional studieS. Nevertheless, important limitations bility.

Result Summary

has the highest standalone predictive accuracy for cation and outcome modification(2) (Table 3). severe placental disorders when performed in the and study populations.

Mid-trimester UADV (around 20–24 weeks) emerged as the most reliable standalone screening Meta-analytic evidence reinforced these trends:

remain. The included studies varied in design, pop-onset cases (<32 weeks) rising to 93%. Bilateral ulation risk profiles, gestational timing of Doppler notching gave similar sensitivity but increased false assessment, and criteria for defining SGA, leading positives(1). Kurdi et al. (1998) confirmed that mid to significant heterogeneity. This weakens the abil--trimester bilateral notching and elevated RI ity to generalize findings across settings. Moreover, (>0.55) substantially increased the risk of PE and as the authors acknowledge, SGA is an imperfect SGA, with the most predictive combination yieldsurrogate for pathological growth restriction; many ing a PPV of ~46% for major placental complicaconstitutionally small but healthy infants may have tions(13). García et al. (2016), in the large UTObeen misclassified, which dilutes clinical applica- PIA RCT, reported that mid-trimester UADV detected 59-60% of early PE/IUGR at an ~11% falsepositive rate, yet disclosure of results and extra monitoring did not reduce adverse outcome rates Collectively, these findings confirm that UADV — highlighting the difference between risk identifi-

mid-trimester, but its real clinical value emerges First-trimester UADV alone was less sensitive for when used within combined algorithms linked to broad disease detection but more informative for effective interventions. First-trimester UADV alone severe and early phenotypes. Martin et al. (2001) is insufficient for universal screening but is highly found that PI > 95th centile at 11–14 weeks detectinformative in multimarker models, particularly for ed only 27% of all PE but 60% of PE requiring deearly-onset disease. Routine second-trimester livery before 32 weeks, with specificity around UADV without an outcome-modifying pathway 88% for early disease(14). Melchiorre et al. (2009) does not improve perinatal outcomes, but when similarly showed modest overall discrimination for embedded in structured risk-stratification protocols SGA (AUC 0.60) but better for preterm IUGR — as in the ASPRE programme — it enables ac- (AUC 0.78), with bilateral notching and higher RI tionable, preventive care. Across the eight included more prevalent in affected pregnancies (15). Scanstudies, the predictive value of uterine artery Dop-diuzzi et al. (2016) added that first-trimester RI > pler velocimetry (UADV) for placental-mediated 95th centile was an independent predictor of hypercomplications showed consistent trends despite dif- tensive disorders (OR ~23), even if secondferences in gestational age at testing, thresholds, trimester Doppler later appeared normal - suggesting early placental maladaptation leaves a lasting risk imprint (16)(Table 3).

window. In large, pragmatic cohorts such as Pa-pooled data from 41 studies showed that abnormal pageorghiou et al. (2001), mean PI above the 95th UADV was associated with higher odds of SGA centile at 23 weeks detected 69% of PE with con- across all trimesters, with the strongest association comitant FGR, 24% of PE without FGR, and 13% in the third trimester (OR \approx 6 for PI > 95th centile), of isolated FGR, with detection for severe early-followed by the second trimester (OR \approx 3)(17).

Mean PI and RI values were significantly higher in SGA cases at all gestational stages. Integration of UADV into multimarker screening transforms its utility. Rolnik et al. (2017) in the ASPRE trial demonstrated that a first-trimester combined algorithm (maternal factors, MAP, UADV, PAPP-A, PIGF) detected 76.7% of preterm PE and 43.1% of term PE at a 10% screen-positive rate; linked randomisation to aspirin prophylaxis reduced preterm PE by 62%(3). This represents the clearest example of UADV contributing to a pathway that both identifies and successfully prevents disease (Table 3).

Ref. No.	Author & Year	GA at UADV	Doppler Criteria	Outcome(s)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Notes
1	Papageor- ghiou 2001 (1)	23 wks	Mean PI > 95th centile	PE + FGR	69	_	_	_	93% detection for <32 wks cases
	Papageor- ghiou 2001 (1)	23 wks	Mean PI > 95th centile	PE without FGR	24	_	_	_	
	Papageor- ghiou 2001 (1)	23 wks	Mean PI > 95th centile	Isolated FGR	13	_	_	_	
2	Martin 2001 (14)	11–14 wks	Mean PI > 95th centile (2.35)	All PE	27	_	_	_	
2	Martin 2001 (14)	11–14 wks	Mean PI > 95th centile (2.35)	Early PE (<32 wks)	60	88	_	_	
2	Martin 2001 (14)	11–14 wks	Mean PI > 95th centile (2.35)	FGR	11.7	_	_	_	
3	Kurdi 1998 (13)	20 wks	Bilateral notching + RI > 0.55	Major pla- cental com- plications	_	_	46	_	OR for PE increased steeply
4	Melchiorre 2009(15)	11–14 wks	RI > 90th / 95th centile	SGA	_	_	_	_	AUC 0.60 overall; 0.78 for preterm IUGR
5	Scandiuzzi 2016(16)	11–14 wks	Mean RI > 95th centile	Hypertensive disorders	_	_	_	_	OR ~23; AUC 0.81 with mater- nal factors
6	Zhi 2023(17)	Various	PI > 95th centile	SGA	_	_	_	_	$OR \approx 3$ (2nd tri), $OR \approx 6$ (3rd tri)
7	García 2016 (UTOPIA) (2)	19–22 wks	PI > 90th centile	Early PE/ IUGR	59–60	_	_	_	FPR ~11%
8	Rolnik 2017 (ASPRE)(3)	11–13 wks	Combined algorithm (incl. UADV)	Preterm PE	76.7	_	_	_	10% screen- positive rate
8	Rolnik 2017 (ASPRE)(3)	11–13 wks	Combined algorithm (incl. UADV)	Term PE	43.1	_	_	_	

Table 3: Summary of Uterine Artery Doppler Detection Rates for Preeclampsia, Fetal Growth Restriction, and Small-for-Gestational-Age Across Eight Key Studies

Collectively, these data indicate:

- Mid-trimester UADV is the strongest single-parameter predictor for severe placental disease, particularly early-onset PE and FGR.
- First-trimester UADV has limited standalone sensitivity for all disease but detects a substantial proportion of early/severe cases and adds value in combined algorithms.

AJMCRR, 2025

- egies can yield measurable clinical benefit.
- Abnormalities detected may still signal higher residual risk.

Discussion

The synthesis of eight pivotal studies on uterine ited impact. artery Doppler velocimetry (UADV) in predicting screening is performed.

screening window in the reviewed literature. In Pa-standalone screen. pageorghiou et al. (2001), mean PI above the 95th centile at 23 weeks detected nearly 70 % of PE cas- The strongest evidence for such an integrated appositive rates(1). García et al. (2016) reported simi- trimester UADV was incorporated into a multiwith approximately 60 % detection of early-onset mographic risk factors, mean arterial pressure, and PE and IUGR using a 90th centile threshold for biochemical markers (PAPP-A and PIGF)(3). At a

Standalone screening without a linked interven- mean PI(2). However, the UTOPIA trial also illustion pathway does not improve outcomes, but trated a critical limitation of screening in isolation: integrated risk algorithms plus preventive strat- even though high-risk pregnancies were successfully identified, providing clinicians with Doppler early that later results did not significantly improve maternal or "normalise" should not be dismissed, as they perinatal outcomes in the absence of an effective therapeutic pathway. This finding underscores a central point for both clinical translation and policy -making—detection without intervention has lim-

pre-eclampsia (PE), fetal growth restriction (FGR), First-trimester UADV presents a different profile and small for gestational age (SGA) provides a of utility. Martin et al. (2001) and Melchiorre et al. clear overview of the evolving role of this modality (2009) demonstrated that early uterine artery abin obstetric risk assessment. Across the body of normalities are more predictive of severe, earlyevidence, there is consistent agreement that abnor- onset placental disease than of all forms of PE or mal uterine artery impedance, particularly elevated SGA(14,15). Martin et al. achieved 60 % detection pulsatility index (PI), resistance index (RI), and the for PE requiring delivery before 32 weeks but only persistence of bilateral early diastolic notching, 27 % for PE overall(14). Melchiorre et al. identireflects impaired placentation and is associated fied higher RI values and more frequent bilateral with an increased likelihood of subsequent adverse notching in pregnancies that went on to develop pregnancy outcomes. However, the degree of pre- preterm intrauterine growth restriction, with notadictive value, clinical applicability, and impact on bly better discrimination for this severe phenotype outcomes is determined by multiple variables in- than for broader definitions of SGA(15). These recluding gestational timing, integration with other sults reflect the biological plausibility that early risk markers, and the healthcare context in which haemodynamic disturbances reflect poor placental development but may be insufficiently distinct to predict milder, late-onset disease. Importantly, both Mid-trimester UADV, especially between 19 and studies highlight the potential of early Doppler as 24 weeks, emerges as the most reliable standalone part of a predictive model, rather than as a

es with concurrent FGR and over 90 % of the most proach comes from the ASPRE trial by Rolnik et severe early-onset cases, with acceptable false- al. (2017). In this large prospective study, firstlar diagnostic performance in the UTOPIA trial, modal screening algorithm alongside maternal depreterm PE cases with a 10 % false-positive rate, tistical power and external validity to their findand crucially, high-risk women were randomised to ings. Doppler parameters were clearly defined and receive aspirin prophylaxis or placebo. The inter- reproducible, with centile-based cut-offs facilitatvention reduced the incidence of preterm PE by ing standardisation. The consistent dose-response over 60 %, providing the clearest demonstration relationship between higher impedance and more that Doppler's value is maximised when embedded severe disease lends biological credibility to the in a calibrated risk model linked to a proven, out- associations. Later studies, particularly ASPRE, come-modifying therapy. This study shifts the con- illustrate that when Doppler is combined with other versation from mere detection to genuine preven- markers and linked to a proven intervention, meantion and serves as a template for how screening ingful outcome improvement is achievable. research should be operationalised in clinical practice.

tives. Kurdi et al. (1998) adopted a "one-stop" mid-tion technique (transabdominal vs transvaginal), trimester screening approach during the 20-week and threshold definitions, which complicates direct anomaly scan, combining bilateral notching and comparison and meta-analysis. Many earlier studelevated RI to achieve high positive predictive valies assessed Doppler at a single time point, missing ues for adverse outcomes(13). However, the in- the potential benefit of tracking haemodynamic creased detection was accompanied by a higher changes across pregnancy. First-trimester Doppler false-positive rate and a dependency on operator alone has modest predictive accuracy for late-onset skill, highlighting the practical trade-offs in real- PE and SGA, limiting its stand-alone value in uniworld application. Scandiuzzi et al. (2016), in a versal screening programmes. The inclusion of dismaller low-risk Brazilian cohort, showed that ele- verse populations remains limited, with most highvated RI in the first trimester—even if normalised quality studies conducted in well-resourced setlater-still conferred a markedly increased risk of tings; thus, extrapolation to low-resource and multi hypertensive disorders, suggesting that sequential -ethnic contexts requires caution. Furthermore, in Doppler evaluation could refine risk assessment several large trials, high detection rates did not lead and identify persistent high-risk subgroups(16). Zhi to improved outcomes because effective intervenet al. (2023) provided meta-analytic evidence contions were lacking or inconsistently applied. firming the association between abnormal uterine artery indices and SGA across all trimesters, with Conclusion mid-trimester as a key screening point(17).

overarching strengths. Many were large-scale, pro- the most robust standalone predictive performance,

1:100 risk cut-off, the model detected 76.7 % of spective, and often multicentre, lending strong sta-

At the same time, important limitations are evident. There is marked heterogeneity in methodologies, Other reviewed studies contribute unique perspec- including differences in gestational timing, acquisi-

the strongest odds ratios observed in mid-to-late In conclusion, the reviewed literature positions pregnancy, reinforcing the clinical relevance of the uterine artery Doppler as an important component of obstetric risk assessment, particularly for identifying pregnancies at risk of severe early-onset pla-Taken together, these studies demonstrate several cental disease. Mid-trimester measurement offers while first-trimester Doppler finds its greatest value within multimodal screening models. The evidence strongly supports structured integration of Doppler into protocols that include maternal risk assessment, biochemical markers, and clearly defined management pathways. For clinical and policy 4. adoption, the focus should shift toward models where early detection is directly linked to evidencebased interventions, thereby maximising the potential to improve maternal and perinatal outcomes. For the present thesis, these findings not only justify the use of UADV in the study design but also 5. highlight areas for methodological refinement, such as standardised acquisition protocols, sequential Doppler assessment, and validation in diverse populations, ensuring both clinical relevance and research robustness.

References:

- Papageorghiou, A.T., Yu, C.K., Bindra, R., Pandis, G. and Nicolaides, K.H. (2001) 'Multicenter screening for pre-eclampsia and fetal growth restriction by transvaginal uterine artery Doppler at 23 weeks of gestation', Ultrasound in Obstetrics and Gynecology, 18(5), pp. 441–449.
- García B, Llurba E, Valle L, Gómez-Roig MD, Juan M, Pérez-Matos C, Fernández M, García-Hernández JA, Alijotas-Reig J, Higueras MT, Calero I, Goya M, Pérez-Hoyos S, Carreras E, Cabero L. Do knowledge of uterine artery resistance in the second trimester and targeted 8. surveillance improve maternal and perinatal outcome? UTOPIA study: a randomized controlled trial. Ultrasound Obstet Gynecol. 2016 Jun;47(6):680-9. doi: 10.1002/uog.15873. PMID: 26823208.
- 3. Rolnik, D.L., Wright, D., Poon, L.C., Synge- 9. laki, A., O'Gorman, N., de Paco Matallana, C.,

- Akolekar, R., Cicero, S., Janga, D., Singh, M. and Molina, F.S. (2017) 'ASPRE trial: performance of screening for preterm pre-eclampsia', Ultrasound in Obstetrics & Gynecology, 50(4), pp. 492–495.
- 4. Khong, S.L., Kane, S.C., Brennecke, S.P. and da Silva Costa, F. (2015) 'First-trimester uterine artery Doppler analysis in the prediction of later pregnancy complications', Disease Markers, 2015, p. 679730. doi:10.1155/2015/679730.
- Velauthar, L., Plana, M.N., Kalidindi, M., et al. (2014) 'First-trimester uterine artery Doppler and adverse pregnancy outcome: a metaanalysis involving 55,974 women', Ultrasound in Obstetrics and Gynecology, 43(5), pp. 500– 507. doi:10.1002/uog.13275
- 6. Yu, C.K., Khouri, O., Onwudiwe, N., Spiliopoulos, Y. and Nicolaides, K.H. (2008) 'Prediction of pre-eclampsia by uterine artery Doppler imaging: relationship to gestational age at delivery and small-for-gestational age', Ultrasound in Obstetrics and Gynecology, 31 (3), pp. 310–313. doi:10.1002/uog.5252
- sound in Obstetrics and Gynecology, 18(5), pp. 7. Li, N., Ghosh, G. and Gudmundsson, S. (2014) 441–449.

 García B, Llurba E, Valle L, Gómez-Roig MD,
 Juan M, Pérez-Matos C, Fernández M, GarcíaHernández JA, Alijotas-Reig J, Higueras MT,
 Calero I, Goya M, Pérez-Hoyos S, Carreras E,
 Cabero L. Do knowledge of uterine artery re
 Li, N., Ghosh, G. and Gudmundsson, S. (2014)

 'Uterine artery Doppler in high-risk pregnancies at 23–24 gestational weeks is of value in predicting adverse outcome of pregnancy and selecting cases for more intense surveillance',
 Acta Obstetricia et Gynecologica Scandinavica,
 93, pp. 1276–1281. doi:10.1111/aogs.12488.
 - Gudnasson, H.M., Dubiel, M. and Gudmundsson, S. (2004) 'Preeclampsia abnormal uterine artery Doppler is related to recurrence of symptoms during the next pregnancy', Journal of Perinatal Medicine, 32, pp. 400–403. doi:10.1515/jpm.2004.135
 - . Acharya, G., Wilsgaard, T., Berntsen, G.K., Maltau, J.M. and Kiserud, T. (2005) 'Reference

AJMCRR, 2025

- artery Doppler indices in the second half of pregnancy', American Journal of Obstetrics and Gynecology, 192, pp. 937-944. doi:10.1016/j.ajog.2004.09.019.
- 10. Bao, S.H., Chigirin, N., Hoch, V., et al. (2019) reproductive outcome in women with recurrent pregnancy losses and thrombophilia', BioMed Research International, 2019, p. 8787010. doi:10.1155/2019/8787010.
- 11. Habara, T., Nakatsuka, M., Konishi, H., et al. (2002) 'Elevated blood flow resistance in uterrent pregnancy loss', Human Reproduction, 17, pp. 190-194. doi:10.1093/humrep/17.1.190.
- 12. Mariana, N.A., Chowdhury, T.I. and Choudhury, T.R. (2020) 'Uterine artery Doppler screening in 2nd trimester of pregnancy for prediction of pre-eclampsia and fetal growth restriction', Journal of Advances in Medicine and Medical Research, 32(13), pp. 7 -22.
- 13. Kurdi, W., Campbell, S., Aquilina, J., England, P. and Harrington, K. (1998) 'The role of color Doppler imaging of the uterine arteries at 20 weeks' gestation in stratifying antenatal care', Ultrasound in Obstetrics and Gynecology, 12 (5), pp. 339–345.

- ranges for serial measurements of umbilical 14. Martin, A.M., Bindra, R., Curcio, P., Cicero, S. and Nicolaides, K.H. (2001) 'Screening for pre -eclampsia and fetal growth restriction by uterine artery Doppler at 11-14 weeks of gestation', Ultrasound in Obstetrics and Gynecology, 18(6), pp. 583–586.
- 'Uterine radial artery resistance index predicts 15. Melchiorre, K., Leslie, K., Prefumo, F., Bhide, A. and Thilaganathan, B. (2009) 'Firsttrimester uterine artery Doppler indices in the prediction of small-for-gestational age pregnancy and intrauterine growth restriction', Ultrasound in Obstetrics and Gynecology, 33(5), pp. 524–529.
- ine arteries of women with unexplained recur- 16. Scandiuzzi, R.M., de Campos Prado, C.A., Júnior, E.A., Duarte, G., Quintana, S.M., da Silva Costa, F., Tonni, G., de Carvalho Cavalli, R. and Marcolin, A.C. (2016) 'Maternal uterine artery Doppler in the first and second trimesters as screening method for hypertensive disorders and adverse perinatal outcomes in low-risk pregnancies', Obstetrics & Gynecology Science, 59(5), pp. 347–356.
 - 17. Zhi, R., Tao, X., Li, Q., Yu, M. and Li, H. (2023) 'Association between transabdominal uterine artery Doppler and small-forgestational-age: A systematic review and metaanalysis', BMC Pregnancy and Childbirth, 23 (1), p. 59.