The unsuspected source of oxygen in Crohn´s Disease

Original Article


Abstract views: 131 / PDF downloads: 169

Authors

  • Arturo Solís Herrera

DOI:

https://doi.org/10.58372/2835-6276.1149

Keywords:

Bowell, Crohn´s, Hydrogen, Ileum, mucosa, serosa, oxygen, water

Abstract

Crohn disease is a chronic idiopathic inflammatory bowel disease condition characterized by skip lesions and transmural inflammation that can affect the entire gastrointestinal tract from the mouth to the anus.  Presenting symptoms are often variable and may include diarrhea, abdominal pain, weight loss, nausea, vomiting, and in certain cases fevers or chills.  in some cases, extraintestinal manifestations may develop. The diagnosis is typically made with endoscopic and/or radiologic findings. Disease management is usually with pharmacologic therapy; however, most patients will eventually require surgery for their disease.

Crohn disease can affect any part of the gastrointestinal tract. About one-third of patients have small bowel involvement, especially the terminal ileum, another 20% have only colon involvement and about 50% be involved of both the colon and small bowel. So far, there is no cure, and most patients experience bouts of remissions and relapse at unpredictable times. This disease leads to very poor quality of life.

Our observation that our body does not take oxygen from the air, but from intracellular water, like plants, implies rethinking the etiopathogenesis of the disease. Crohn's disease, because until now, the interpretation of clinical findings is because we take oxygen from the air, when the purpose of breathing is only to expel the CO2 that is continually formed inside our body.

References

Ghersin I, Khteeb N, Katz LH, Daher S, Shamir R, Assa A. Trends in the epidemiology of inflammatory bowel disease among Jewish Israeli adolescents: a population-based study. Aliment Pharmacol Ther. 2019 Mar;49(5):556-563.

Coward S, Clement F, Benchimol EI, Bernstein CN, Avina-Zubieta JA, Bitton A, Carroll MW, Hazlewood G, Jacobson K, Jelinski S, Deardon R, Jones JL, Kuenzig ME, Leddin D, McBrien KA, Murthy SK, Nguyen GC, Otley AR, Panaccione R, Rezaie A, Rosenfeld G, Peña-Sánchez JN, Singh H, Targownik LE, Kaplan GG. Past and Future Burden of Inflammatory Bowel Diseases Based on Modeling of Population-Based Data. Gastroenterology. 2019 Apr;156(5):1345-1353.e4.

Greuter T, Piller A, Fournier N, Safroneeva E, Straumann A, Biedermann L, Godat S, Nydegger A, Scharl M, Rogler G, Vavricka SR, Schoepfer AM., Swiss IBD Cohort Study Group. Upper Gastrointestinal Tract Involvement in Crohn's Disease: Frequency, Risk Factors, and Disease Course. J Crohns Colitis. 2018 Nov 28;12(12):1399-1409.

Fumery M, Pariente B, Sarter H, Savoye G, Spyckerelle C, Djeddi D, Mouterde O, Bouguen G, Ley D, Peneau A, Dupas JL, Turck D, Gower-Rousseau C., Epimad Group. Long-term outcome of pediatric-onset Crohn's disease: A population-based cohort study. Dig Liver Dis. 2019 Apr;51(4):496-502.

Targan SR. Biology of inflammation in Crohn's disease: mechanisms of action of anti-TNF-a therapy. Can J Gastroenterol. 2000 Sep;14 Suppl C:13C-16C.

Kobayashi T, Siegmund B, Le Berre C, et al. Ulcerative colitis. Nat Rev Dis Prim 2020;6:74.

Roda G, Chien Ng S, Kotze PG, et al. Crohn’s disease. Nat Rev Dis Prim 2020;6:1-19.

Coban Yusuf Kenan, Kurutas, Ergul Berge. Ciralik, Harun. Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats. On the book: Mediators of Inflammation,Hindawi Publishing Corporation. 2005:5 (2005) 304–308 • PII: S0962935105507051 • DOI: 10.1155/MI.2005.304

Solís-Herrera A, Ashraf GM, del C A Esparza M, Arias RI, Bachurin SO, Barreto GE, Aliev G. Biological Activities of QIAPI 1 as a Melanin Precursor and Its Therapeutic Effects in Wistar Rats Exposed to Arsenic Poisoning. Cent Nerv Syst Agents Med Chem. 2015;15(2):99-108. doi: 10.2174/1871524915666150424113831. PMID: 25909193.

Cummins EP, Crean D. Hypoxia and inflammatory bowel disease. Microbes Infect. 2017 Mar;19(3):210-221. doi: 10.1016/j.micinf.2016.09.004. Epub 2016 Sep 20. PMID: 27664046.

Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. (2007) 369:1627–40. 10.1016/S0140-6736(07)60750-8

Kaplan GG. The global burden of Ibd: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. (2015) 12:720–7. 10.1038/nrgastro.2015.150

Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology. (2019) 157:647–59.e4. 10.1053/j.gastro.2019.04.016

Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - a review. Environ Int. (2019) 124:336–53. 10.1016/j.envint.2019.01.011

Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, et al.. Lost at sea: where is all the plastic? Science. (2004) 304:838. 10.1126/science.1094559

Yu L, Duan H, Yu Y, Zhang Q, Zhao J, Zhang H, et al.. Dose-dependent effects of chronic lead toxicity in vivo: focusing on trace elements and gut microbiota. Chemosphere. (2022) 301:134670. 10.1016/j.chemosphere.2022.134670

Liu Q, Chen Z, Chen Y, Yang F, Yao W, Xie Y. Microplastics and nanoplastics: emerging contaminants in food. J Agric Food Chem. (2021) 69:10450–68. 10.1021/acs.jafc.1c04199

Kannan K, Vimalkumar K. A review of human exposure to microplastics and insights into microplastics as obesogens. Front Endocrinol. (2021) 12:724989. 10.3389/fendo.2021.724989

The Lancet Oncology . Endocrine disruptors—the lessons (not) learned. Lancet Oncol. (2021) 22:1483. 10.1016/S1470-2045(21)00597-0

Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, et al.. Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Front Public Health. (2020) 8:553850. 10.3389/fpubh.2020.553850

Ismanto A, Hadibarata T, Kristanti RA, Maslukah L, Safinatunnajah N, Kusumastuti W. Endocrine disrupting chemicals (Edcs) in environmental matrices: occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ Pollut. (2022) 302:119061. 10.1016/j.envpol.2022.119061

Tyohemba RL, Pillay L, Humphries MS. Bioaccumulation of current-use herbicides in fish from a global biodiversity hotspot: Lake St Lucia, South Africa. Chemosphere. (2021) 284:131407. 10.1016/j.chemosphere.2021.131407

Van Bruggen AHC, He MM, Shin K, Mai V, Jeong KC, Finckh MR, et al.. Environmental and health effects of the herbicide glyphosate. Sci Total Environ. (2018) 616–7:255–68. 10.1016/j.scitotenv.2017.10.309

Järup L. Hazards of heavy metal contamination. Br Med Bull. (2003) 68:167–82. 10.1093/bmb/ldg032

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. (2012) 101:133–64. 10.1007/978-3-7643-8340-4_6

Shammi SA, Salam A, Khan MAH. Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka, Bangladesh. Environ Monit Assess. (2021) 193:104. 10.1007/s10661-021-08848-y

Sall ML, Diaw AKD, Gningue-Sall D, Efremova Aaron S, Aaron JJ. Toxic heavy metals: impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res Int. (2020) 27:29927–42. 10.1007/s11356-020-09354-3

Casas G, Martinez-Varela A, Vila-Costa M, Jimenez B, Dachs J. Rain amplification of persistent organic pollutants. Environ Sci Technol. (2021) 55:12961–72. 10.1021/acs.est.1c03295

Ge M, Wang X, Yang G, Wang Z, Li Z, Zhang X, et al.. Persistent organic pollutants (pops) in deep-sea sediments of the tropical western Pacific Ocean. Chemosphere. (2021) 277:130267. 10.1016/j.chemosphere.2021.130267

El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. Environ Sci Pollut Res Int. (2021) 28:44726–54. 10.1007/s11356-021-14999-9

Knauer K, Homazava N, Junghans M, Werner I. The influence of particles on bioavailability and toxicity of pesticides in surface water. Integr Environ Assess Manag. (2017) 13:585–600. 10.1002/ieam.1867

Jones KC. Persistent Organic Pollutants (Pops) and Related Chemicals in the Global Environment: Some Personal Reflections. Environ Sci Technol. (2021) 55:9400–12. 10.1021/acs.est.0c08093

Fernandes AR, Falandysz J. Polybrominated dibenzo-P-dioxins and furans (Pbdd/Fs): contamination in food, humans and dietary exposure. Sci Total Environ. (2021) 761:143191. 10.1016/j.scitotenv.2020.143191

Castro-Jimenez J, Banaru D, Chen CT, Jimenez B, Munoz-Arnanz J, Deviller G, et al.. Persistent organic pollutants burden, trophic magnification and risk in a pelagic food web from coastal Nw Mediterranean Sea. Environ Sci Technol. (2021) 55:9557–68. 10.1021/acs.est.1c00904

Sachar M, Anderson KE, Ma X. Protoporphyrin IX: the Good, the Bad, and the Ugly. J Pharmacol Exp Ther. 2016 Feb;356(2):267-75. doi: 10.1124/jpet.115.228130. Epub 2015 Nov 20. PMID: 26588930; PMCID: PMC4727154.

Herrera AS, Del C A Esparza M, Md Ashraf G, Zamyatnin AA, Aliev G. Beyond mitochondria, what would be the energy source of the cell? Cent Nerv Syst Agents Med Chem. 2015;15(1):32-41. doi: 10.2174/1871524915666150203093656. PMID: 25645910.

Arturo Solís Herrera, María del Carmen Arias Esparza (2022) Oxygen from the Atmosphere Cannot Pass Through the Lung Tissues and Reach the Bloodstream. The Unexpected Capacity of Human Body to Dissociate the Water Molecule. Journal of Pulmonology Research & Reports. SRC/JPRR-133. DOI: doi.org/10.47363/JPRR/2022(4)124

Marti S, Carsin AE, Sampol J, Pallero M, Aldas I, Marin T, Lujan M, Lalmolda C, Sabater G, Bonnin-Vilaplana M, Peñacoba P, Martinez-Llorens J, Tárrega J, Bernadich Ó, Córdoba-Izquierdo A, Lozano L, Mendez S, Vélez-Segovia E, Prina E, Eizaguirre S, Balañá-Corberó A, Ferrer J, Garcia-Aymerich J. Higher mortality and intubation rate in COVID-19 patients treated with noninvasive ventilation compared with high-flow oxygen or CPAP. Sci Rep. 2022 Apr 20;12(1):6527. doi: 10.1038/s41598-022-10475-7. PMID: 35444251; PMCID: PMC9020755.

H.G. Bohlen. Intestinal tissue PO2 and microvascular responses during glucose exposure Am J Physiol, 238 (1980), pp. H164-H171

Cummins EP, Crean D. Hypoxia and inflammatory bowel disease. Microbes Infect. 2017 Mar;19(3):210-221. doi: 10.1016/j.micinf.2016.09.004. Epub 2016 Sep 20. PMID: 27664046.

Surprising Facts About the Circulatory System | Live Science Retrieved at January 22, 2024.

Najarian DJ, Gottlieb AB. Connections between psoriasis and Crohn's disease. J Am Acad Dermatol. 2003 Jun;48(6):805-21; quiz 822-4. doi: 10.1067/mjd.2003.540. PMID: 12789169.

Freuer D, Linseisen J, Meisinger C. Association Between Inflammatory Bowel Disease and Both Psoriasis and Psoriatic Arthritis: A Bidirectional 2-Sample Mendelian Randomization Study. JAMA Dermatol. 2022;158(11):1262–1268. doi:10.1001/jamadermatol.2022.3682

Dzutsev, A.; Goldszmid, R.S.; Viaud, S.; Zitvogel, L.; Trinchieri, G. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 2015, 45, 17–31.

Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459.

Levkovich, T.; Poutahidis, T.; Smillie, C.; Varian, B.J.; Ibrahim, Y.M.; Lakritz, J.R.; Alm, E.J.; Erdman, S.E. Probiotic bacteria induce a “glow of health”. PLoS ONE 2013, 8, e53867.

De Francesco MA, Caruso A. The Gut Microbiome in Psoriasis and Crohn's Disease: Is Its Perturbation a Common Denominator for Their Pathogenesis? Vaccines (Basel). 2022 Feb 5;10(2):244

Downloads

Published

2024-03-16

How to Cite

Arturo Solís Herrera. (2024). The unsuspected source of oxygen in Crohn´s Disease: Original Article. American Journal of Medical and Clinical Research & Reviews, 3(3), 1–20. https://doi.org/10.58372/2835-6276.1149

Issue

Section

Articles