Cardiac Remodeling: Pathophysiology And Current Management Strategies
Research Article
Abstract views: 45 / PDF downloads: 10
DOI:
https://doi.org/10.58372/2835-6276.1220Abstract
-
References
Wu QQ, Xiao Y, Yuan Y, Ma ZG, Liao HH, Liu C, et al. Mechanisms contributing to cardiac remodelling. Clinical Science. 25 de agosto de 2017;131(18):2319-45.
Cardiac Plasticity | NEJM [Internet]. [citado 30 de enero de 2024]. Disponible en: https://www.nejm.org/doi/full/10.1056/NEJMra072139
Bernardo BC, McMullen JR. Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiology Clinics. 1 de noviembre de 2016;34(4):515-30.
Eghbali M, Deva R, Alioua A, Minosyan TY, Ruan H, Wang Y, et al. Molecular and Functional Signature of Heart Hypertrophy During Pregnancy. Circulation Research. 10 de junio de 2005;96(11):1208-16.
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. septiembre de 2015;89(9):1401-38.
Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. julio de 1975;56(1):56-64.
Spaich S, Katus H, Backs J. Ongoing controversies surrounding cardiac remodeling: is it black and white—or rather fifty shades of gray? Frontiers in Physiology [Internet]. 2015 [citado 30 de enero de 2024];6. Disponible en: https://www.frontiersin.org/articles/10.3389/fphys.2015.00202
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. agosto de 2016;97:245-62.
Janicki JS, Spinale FG, Levick SP. Gender Differences in Non-Ischemic Myocardial Remodeling: Are They Due to Estrogen Modulation of Cardiac Mast Cells and/or Membrane Type 1 Matrix Metalloproteinase. Pflugers Arch. mayo de 2013;465(5):687-97.
Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Medicine and Cellular Longevity. 2017;2017:1-16.
Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL. Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure With Reduced Ejection Fraction. JACC: Heart Failure. 1 de septiembre de 2019;7(9):782-94.
Halliday BP, Wassall R, Lota AS, Khalique Z, Gregson J, Newsome S, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet. 5 de enero de 2019;393(10166):61-73.
Lupón J, Gaggin HK, de Antonio M, Domingo M, Galán A, Zamora E, et al. Biomarker-assist score for reverse remodeling prediction in heart failure: The ST2-R2 score. Int J Cardiol. 1 de abril de 2015;184:337-43.
Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 14 de julio de 2022;43(27):2549-61.
Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 31 de mayo de 2014;383(9932):1933-43.
Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise. Cell Metab. 2 de mayo de 2017;25(5):1012-26.
Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 21 de diciembre de 2010;122(25):2727-35.
Treibel TA, López B, González A, Menacho K, Schofield RS, Ravassa S, et al. Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur Heart J. 21 de febrero de 2018;39(8):699-709.
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol. 5 de mayo de 2020;75(17):2219-35.
Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review - PubMed [Internet]. [citado 18 de febrero de 2024]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/34794691/
Zhao M, Zhang E, Wei Y, Zhou Y, Walcott GP, Zhang J. Apical Resection Prolongs the Cell Cycle Activity and Promotes Myocardial Regeneration After Left Ventricular Injury in Neonatal Pig. Circulation. septiembre de 2020;142(9):913-6.
Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol. diciembre de 2018;18(12):733-44.
Frantz S, Falcao-Pires I, Balligand JL, Bauersachs J, Brutsaert D, Ciccarelli M, et al. The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail. marzo de 2018;20(3):445-59.
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. diciembre de 2020;17(12):773-89.
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 20 de noviembre de 2014;515(7527):431-5.
Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res. 15 de febrero de 2009;81(3):449-56.
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol. 1 de septiembre de 2017;313(3):H597-616.
Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion - PubMed [Internet]. [citado 18 de febrero de 2024]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27693463/
Olivetti G, Capasso JM, Meggs LG, Sonnenblick EH, Anversa P. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res. marzo de 1991;68(3):856-69.
Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. noviembre de 1990;82(5):1724-9.
Zannad F, Rossignol P. Cardiorenal Syndrome Revisited. Circulation. 28 de agosto de 2018;138(9):929-44.
Sharp TE, Lefer DJ. Renal Denervation to Treat Heart Failure. Annu Rev Physiol. 10 de febrero de 2021;83:39-58.
Kangawa K, Fukuda A, Kubota I, Hayashi Y, Minamitake Y, Matsuo H. Human atrial natriuretic polypeptides (hANP): purification, structure synthesis and biological activity. J Hypertens Suppl. diciembre de 1984;2(3):S321-323.
Kasama S, Furuya M, Toyama T, Ichikawa S, Kurabayashi M. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction. Eur Heart J. junio de 2008;29(12):1485-94.
Nascimben L, Ingwall JS, Lorell BH, Pinz I, Schultz V, Tornheim K, et al. Mechanisms for increased glycolysis in the hypertrophied rat heart. Hypertension. noviembre de 2004;44(5):662-7.
Liang L, Tang R, Xie Q, Han J, Li W. The clinical effect of recombinant human brain natriuretic peptide on asymptomatic peri-procedural myocardial injury after percutaneous transluminal coronary angioplasty. Sci Rep. 28 de septiembre de 2020;10(1):15902.
Peng X, Zhou J, Wu XS. New Strategies for Myocardial Infarction Treatment. Journal of Cardiology and Therapy. 3 de junio de 2017;4(3):664-70.
McCartney PJ, Berry C. Redefining successful primary PCI. Eur Heart J Cardiovasc Imaging. 1 de febrero de 2019;20(2):133-5.
Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Curr Cardiol Rep. agosto de 2017;19(8):71.
Solhpour A, Yusuf SW. Fibrinolytic therapy in patients with ST-elevation myocardial infarction. Expert Rev Cardiovasc Ther. febrero de 2014;12(2):201-15.
Huttin O, Coiro S, Selton-Suty C, Juillière Y, Donal E, Magne J, et al. Prediction of Left Ventricular Remodeling after a Myocardial Infarction: Role of Myocardial Deformation: A Systematic Review and Meta-Analysis. PLoS One. 2016;11(12):e0168349.
Liu S, Meng X, Li G, Gokulnath P, Wang J, Xiao J. Exercise Training after Myocardial Infarction Attenuates Dysfunctional Ventricular Remodeling and Promotes Cardiac Recovery. RCM. 19 de abril de 2022;23(4):148.
Moreira JI. Beta-blocker therapy after myocardial infarction or acute coronary syndrome: What we don’t know. Revista Portuguesa de Cardiologia. 1 de abril de 2021;40(4):291-2.
Hwang D, Lee JM, Kim HK, Choi KH, Rhee TM, Park J, et al. Prognostic Impact of β-Blocker Dose After Acute Myocardial Infarction. Circ J. 25 de enero de 2019;83(2):410-7.
(PDF) Beta blockers: effects Beyond Heart Rate Control [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://www.researchgate.net/publication/327777493_Beta_blockers_effects_Beyond_Heart_Rate_Control
Effects of Carvedilol on Left Ventricular Remodeling After Acute Myocardial Infarction | Circulation [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://www.ahajournals.org/doi/10.1161/01.CIR.0000108928.25690.94
The Effects of Different β-Blockers on Left-Ventricular Volume and Function After Primary Coronary Stenting in Acute Myocardial Infarction - Sang-Hak Lee, Seong-Bo Yoon, Jung-Rae Cho, Seonghoon Choi, Jae-Hun Jung, Namho Lee, 2008 [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://journals.sagepub.com/doi/10.1177/0003319708315303
Zhao W, Zhao J, Rong J. Pharmacological Modulation of Cardiac Remodeling after Myocardial Infarction. Oxidative Medicine and Cellular Longevity. 31 de diciembre de 2020;2020:e8815349.
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. The Lancet. 14 de enero de 2017;389(10065):197-210.
Ko D, Azizi P, Koh M, Chong A, Austin P, Stukel T, et al. Comparative effectiveness of ACE inhibitors and angiotensin receptor blockers in patients with prior myocardial infarction. Open Heart. 2019;6(1):e001010.
Rincon-Choles H. ACE inhibitor and ARB therapy: Practical recommendations. Cleve Clin J Med. septiembre de 2019;86(9):608-11.
Changes in Ventricular Size and Function in Patients Treated With Valsartan, Captopril, or Both After Myocardial Infarction | Circulation [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.104.508093
Bossard M, Binbraik Y, Beygui F, Pitt B, Zannad F, Montalescot G, et al. Mineralocorticoid receptor antagonists in patients with acute myocardial infarction - A systematic review and meta-analysis of randomized trials. Am Heart J. enero de 2018;195:60-9.
Early Aldosterone Blockade in Acute Myocardial Infarction: The ALBATROSS Randomized Clinical Trial - PubMed [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/27102506/
Liu S, Yin B, Wu B, Fan Z. Protective effect of sacubitril/valsartan in patients with acute myocardial infarction: A meta‑analysis. Experimental and Therapeutic Medicine. 1 de junio de 2022;23(6):1-9.
McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 11 de septiembre de 2014;371(11):993-1004.
Pfeffer MA, Claggett B, Lewis EF, Granger CB, Køber L, Maggioni AP, et al. Angiotensin Receptor-Neprilysin Inhibition in Acute Myocardial Infarction. N Engl J Med. 11 de noviembre de 2021;385(20):1845-55.
Prospective ARNI vs. ACE inhibitor trial to DetermIne Superiority in reducing heart failure Events after Myocardial Infarction (PARADISE‐MI): design and baseline characteristics - Jering - 2021 - European Journal of Heart Failure - Wiley Online Library [Internet]. [citado 19 de febrero de 2024]. Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/ejhf.2191
Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 17 de marzo de 2016;374(11):1094.
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 24 de enero de 2019;380(4):347-57.
Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al. Cardiovascular and Renal Outcomes With Canagliflozin According to Baseline Kidney Function. Circulation. 9 de octubre de 2018;138(15):1537-50.
P5334Effect of empagliflozin on cardiovascular events including recurrent events in the EMPA-REG OUTCOME trial | European Heart Journal | Oxford Academic [Internet]. [citado 20 de febrero de 2024]. Disponible en: https://academic.oup.com/eurheartj/article/39/suppl_1/ehy566.P5334/5083282
Lee SY, Lee TW, Park GT, Kim JH, Lee HC, Han JH, et al. Sodium/glucose Co-Transporter 2 Inhibitor, Empagliflozin, Alleviated Transient Expression of SGLT2 after Myocardial Infarction. Korean Circulation Journal. marzo de 2021;51(3):251-62.
Improvement of Left Ventricular Remodeling and Function by Hydroxymethylglutaryl Coenzyme A Reductase Inhibition With Cerivastatin in Rats With Heart Failure After Myocardial Infarction | Circulation [Internet]. [citado 20 de febrero de 2024]. Disponible en: https://www.ahajournals.org/doi/10.1161/hc3401.095946
Statins and myocardial infarction: from secondary ‘preventio... : Journal of Cardiovascular Medicine [Internet]. [citado 6 de marzo de 2024]. Disponible en: https://journals.lww.com/jcardiovascularmedicine/citation/2019/04000/statins_and_myocardial_infarction__from_secondary.9.aspx
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 21 de septiembre de 2017;377(12):1119-31.
Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction [Internet]. [citado 6 de marzo de 2024]. Disponible en: https://www.jstage.jst.go.jp/article/circj/81/8/81_CJ-16-0949/_article
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. diciembre de 2008;456(7224):980-4.
Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 30 de agosto de 2013;113(6):676-89.
Danielson KM, Shah R, Yeri A, Liu X, Garcia FC, Silverman M, et al. Plasma Circulating Extracellular RNAs in Left Ventricular Remodeling Post-Myocardial Infarction. eBioMedicine. 1 de junio de 2018;32:172-81.
Yan M, Chen K, Sun R, Lin K, Qian X, Yuan M, et al. Glucose impairs angiogenesis and promotes ventricular remodelling following myocardial infarction via upregulation of microRNA-17. Experimental Cell Research. 15 de agosto de 2019;381(2):191-200.
Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. diciembre de 2006;27(23):2775-83.
Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial | European Heart Journal | Oxford Academic [Internet]. [citado 6 de marzo de 2024]. Disponible en: https://academic.oup.com/eurheartj/article/41/36/3451/5880008
effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial | European Heart Journal | Oxford Academic [Internet]. [citado 6 de marzo de 2024]. Disponible en: https://academic.oup.com/eurheartj/article/41/38/3702/5898841
Biffi M, Loforte A, Folesani G, Ziacchi M, Attinà D, Niro F, et al. Hybrid transcatheter left ventricular reconstruction for the treatment of ischemic cardiomyopathy. Cardiovasc Diagn Ther. febrero de 2021;11(1):183-92.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 American Journal of Medical and Clinical Research & Reviews
This work is licensed under a Creative Commons Attribution 4.0 International License.