The Neuropsychological Consequences of Anger Suppression: A Review of Sex Differences and Clinical Implications
Research Article
Abstract views: 41 / PDF downloads: 8
DOI:
https://doi.org/10.58372/2835-6276.1246Abstract
Anger suppression is a common coping mechanism used by individuals to manage anger-related emotions. However, chronic anger suppression has been linked to various negative health outcomes, including increased stress, anxiety, and cardiovascular disease. This review aims to synthesize the existing literature on the neuropsychological effects of anger suppression in men and women, with a focus on sex differences and clinical implications. A comprehensive review of existing studies reveals that both men and women exhibit altered neural activity patterns when suppressing anger, including increased activation in the anterior cingulate cortex and insula. However, sex differences emerge in the neural mechanisms underlying anger suppression, with women showing greater activation in the prefrontal cortex and reduced activity in the amygdala, and men showing increased activation in the basal ganglia and reduced activity in the prefrontal cortex. These findings suggest that men and women employ different neural strategies to regulate anger, with implications for the development of sex-specific interventions. Furthermore, chronic anger suppression has been linked to increased symptoms of anxiety and depression in both sexes, but with a greater impact on women's mental health. This review highlights the importance of considering sex differences in the neuropsychological effects of anger suppression and emphasizes the need for clinicians to develop targeted interventions that address the unique needs of men and women. By synthesizing the existing literature, this review aims to provide a comprehensive understanding of the neuropsychological consequences of anger suppression and inform the development of effective treatments for anger-related disorders.
References
Achterberg, M., van Duijvenvoorde, A. C. K., Bakermans-Kranenburg, M. J., & Crone, E. A. (2016). Control your anger! The neural basis of aggression regulation in response to negative social feedback. Social Cognitive and Affective Neuroscience, 11(5), 712–720. https://doi.org/10.1093/scan/nsv154
Ali, N., Nitschke, J. P., Cooperman, C., Baldwin, M. W., & Pruessner, J. C. (2020). Systematic manipulations of the biological stress systems result in sex-specific compensatory stress responses and negative mood outcomes. Neuropsychopharmacology, 45, 1672–1680. https://doi.org/10.1038/s41386-020-0726-8
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303-312. https://doi.org/10.1093/scan/nsm029
Berridge, K. C., & Kringelbach, M. L. (2013). Neuroscience of affect: brain mechanisms of pleasure and displeasure. Current Opinion in Neurobiology, 23(3), 294-303. https://doi.org/10.1016/j.conb.2013.01.017
Blair, R. J. R. (2012). Considering anger from a cognitive neuroscience perspective. WIREs Cognitive Science, 3(1), 65–74. https://doi.org/10.1002/wcs.154
Bonanno, G. A., Papa, A., Lalande, K., Westphal, M., & Coifman, K. (2004). The importance of being flexible: The ability to both enhance and suppress emotional expression predicts long-term adjustment. Psychological Science, 15(7), 482–487. https://doi.org/10.1111/j.0956-7976.2004.00705.x
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry, 51(1), 68-80. https://doi.org/10.1016/S0006-3223(01)01328-2
Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation--a possible prelude to violence. Science, 289(5479), 591-594. https://doi.org/10.1126/science.289.5479.591
Decety, J. (2011). Dissecting the neural mechanisms mediating empathy. Emotion Review, 3(1), 92–108. https://doi.org/10.1177/1754073910374662
Fischer, A. H. (1993). Sex differences in emotionality: Fact or stereotype? Feminism & Psychology, 3(3), 303–318. https://doi.org/10.1177/0959353593033002
Garaigordobil, M. (2020). Intrapersonal emotional intelligence during adolescence: Sex differences, connection with other variables, and predictors. European Journal of Investigation in Health, Psychology and Education, 10(3), 899–914. https://doi.org/10.3390/ejihpe10030064
Geffner-Hoch, R. (1997). Family violence. Springer Reference. https://link.springer.com/article/10.1007/s10896-014-9614-5
Green, M. J., & Malhi, G. S. (2014). Neural mechanisms of the cognitive control of emotion. Acta Neuropsychiatrica, 18(3-4), 144–153. https://doi.org/10.1111/j.1601-5215.2006.00149.x
Hao, F., Tan, W., Jiang, L., Zhang, L., Zhao, X., Zou, Y., Hu, Y., Luo, X., Jiang, X., McIntyre, R. S., Tran, B., Sun, J., Zhang, Z., Ho, R., Ho, C., & Tam, W. (2020). Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain, Behavior, and Immunity, 87, 100-106. https://doi.org/10.1016/j.bbi.2020.04.069
Hawryluck, L., Gold, W. L., Robinson, S., Pogorski, S., Galea, S., & Styra, R. (2004). SARS control and psychological effects of quarantine, Toronto, Canada. Emerging Infectious Diseases, 10(7), 1206–1212. https://doi.org/10.3201/eid1007.030703
Hossain, M. M., Sultana, A., & Purohit, N. (2020). Mental health outcomes of quarantine and isolation for infection prevention: A systematic umbrella review of the global evidence. Epidemiol Health, 42, e2020038. https://doi.org/10.4178/epih.e2020038
Jeong, H., Yim, H. W., Song, Y. J., Ki, M., Min, J. A., Cho, J., & Chae, J. H. (2016). Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiology and Health, 38, e2016048. https://doi.org/10.4178/epih.e2016048
Kong, F., Zhen, Z., Li, J., Huang, L., Wang, X., Song, Y., & Liu, J. (2014). Sex-related neuroanatomical basis of emotion regulation ability. PLoS ONE, 9(5), e97071. https://doi.org/10.1371/journal.pone.0097071
Kubzansky, L. D., & Kawachi, I. (2000). Going to the heart of the matter: do negative emotions cause coronary heart disease? Journal of Psychosomatic Research, 48(4-5), 323–337. https://doi.org/10.1016/S0022-3999(99)00091-4
Kupers, T. A. (2005). Toxic masculinity as a barrier to mental health treatment in prison. Journal of Clinical Psychology, 61(6), 713–724. https://doi.org/10.1002/jclp.20105
Lischke, A., Weippert, M., Mau-Moeller, P., Päschke, S., Jacksteit, R., Hamm, A., & Pahnke, R. (2019). Sex-specific associations between inter-individual differences in heart rate variability and inter-individual differences in emotion regulation. Frontiers in Neuroscience, 12, 1040. https://doi.org/10.3389/fnins.2018.01040
Love, T. M. (2018). The impact of oxytocin on stress: the role of sex. Current Opinion in Behavioral Sciences, 23, 136-142. https://doi.org/10.1016/j.cobeha.2018.06.018
Martin, R. C., & Dahlen, E. R. (2005). Cognitive emotion regulation in the prediction of depression, anxiety, stress, and anger. Personality and Individual Differences, 39(7), 1249–1260. https://doi.org/10.1016/j.paid.2005.06.004
Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., Blasi, G., Wabnitz, A., Honea, R., Verchinski, B., Callicott, J. H., Egan, M., Mattay, V., & Weinberger, D. R. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences, 103(16), 6269–6274. https://doi.org/10.1073/pnas.0511311103
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111–128. https://doi.org/10.1016/j.neubiorev.2016.11.014
Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536–546. https://doi.org/10.1038/nrn2174
Pelz, B. (2024). Neuropsychological and psychiatric determinants of peak performance in high-stress professions. International Journal of Psychiatry Research, 7(6), 1-10.
Pelz, B. (2024). The neuropsychological effects of posture: An analysis of the influence on human biochemistry in the context of sports psychology. Journal of Psychology and Neuroscience, 6(3), 1-7. https://doi.org/10.47485/2693-2490.1093
Potegal, M. (2012). Temporal and frontal lobe initiation and regulation of the top-down escalation of anger and aggression. Behavioural Brain Research, 231(2), 386–395. https://doi.org/10.1016/j.bbr.2011.10.049
Sacher, J., Neumann, J., Okon-Singer, H., Gotowiec, S., & Villringer, A. (2013). Sexual dimorphism in the human brain: Evidence from neuroimaging. Magnetic Resonance Imaging, 31(3), 366–375. https://doi.org/10.1016/j.mri.2012.06.007
Schulte-Rüther, M., Markowitsch, H. J., Shah, N. J., Fink, G. R., & Piefke, M. (2008). Gender differences in brain networks supporting empathy. NeuroImage, 42(1), 393–403. https://doi.org/10.1016/j.neuroimage.2008.04.180
Springer, K. W., Sheridan, J., Kuo, D., & Carnes, M. (2007). Long-term physical and mental health consequences of childhood physical abuse. Child Abuse & Neglect, 31(5), 517–530. https://doi.org/10.1016/j.chiabu.2007.01.003
Strohmaier, J., Amelang, M., Hothorn, L. A., Witt, S. H., Nieratschker, V., Gerhard, D., Meier, S., Wüst, S., Frank, J., Loerbroks, A., Rietschel, M., Stürmer, T., & Schulze, T. G. (2013). The psychiatric vulnerability gene CACNA1C and its sex-specific relationship with personality traits, resilience factors and depressive symptoms in the general population. Molecular Psychiatry, 18(6), 607–613. https://doi.org/10.1038/mp.2012.53
Tan, T., Wang, W., Liu, T., Zhong, P., Conrow-Graham, M., Tian, X., & Yan, Z. (2021). Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Reports, 34(12), 108874. https://doi.org/10.1016/j.celrep.2021.108874
Whittle, S., Yücel, M., Yap, M. B. H., & Allen, N. B. (2011). Sex differences in the neural correlates of emotion: Evidence from neuroimaging. Biological Psychology, 87(3), 319-333. https://doi.org/10.1016/j.biopsycho.2011.05.003
Yang, F., Wang, Z., Zhang, J. H., Tang, J., Liu, X., Tan, L., Huang, Q.-Y., & Feng, H. (2015). Receptor for advanced glycation end-product antagonist reduces blood-brain barrier damage after intracerebral hemorrhage. Stroke, 46(5), 1328-1336. https://doi.org/10.1161/STROKEAHA.114.008336
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 American Journal of Medical and Clinical Research & Reviews
This work is licensed under a Creative Commons Attribution 4.0 International License.