Morphological And Morphometric Characteristics Of The Optic Disc And Retinal Nerve Fiber Layer In Healthy Patients Evaluated By Optical Coherence Tomography At Clínica La Luz
Original Article
Abstract views: 60 / PDF downloads: 27
DOI:
https://doi.org/10.58372/2835-6276.1192Keywords:
Megalopapilla, Optical coherence tomography, Optic discAbstract
Objective: To characterize the morphological and morphometric parameters of the optic disc and retinal nerve fiber layer (RNFL) in healthy patients studied using optical coherence tomography.
Materials and Methods: Descriptive, prospective, cross-sectional study. 252 eyes of 126 patients who attended ophthalmological evaluation at Clínica La Luz in Lima, Peru, from October 2022 to July 2023 were evaluated. Using the ZEISS CIRRUS TM HD OCT Model 5000 optical coherence tomography (Carl Zeiss Inc., Dublin, CA, USA), morphological and morphometric parameters of the optic disc and RNFL thickness were measured. Megalopapilla was defined as an optic disc area > 2.5mm2 and larger than the mean plus 2 standard deviations.
Results: In patients without megalopapilla, the optic disc area was 2.05 ± 0.29mm2, rim area 1.29 ± 0.19mm2, cupping 0.63 ± 0.48 mm2; average cup/disc ratio 0.58 ± 0.13, vertical cup/disc ratio 0.55 ± 0.12, and RNFL thickness 95.99 ± 8.63mm2. The prevalence of patients without megalopapilla was 67% considering an optic disc area <2.5mm2.
In patients with megalopapilla, the optic disc area was 2.87 ± 0.30mm2, rim area 1.36 ± 0.21mm2; average cup/disc ratio 0.71 ± 0.07, vertical cup/disc ratio 0.67 ± 0.07, and RNFL thickness 99.13 ± 8.71mm2. The prevalence of megalopapilla was 33%, considering an optic disc area > 2.5mm2. When comparing megalopapillae with normal discs, the rim area (p < 0.001) and RNFL thickness (p = 0.78) showed no statistically significant differences.
Conclusion: The results showed that the disc area was 2.05 ± 0.29mm2, with CFNR thickness 95.99 ± 8.63mm2. The prevalence of megalopapilla was 32% and 8%, with disc area > 2.5mm2 and 3.07mm2 respectively. The values in terms of ring area and CFNR thickness are similar in megalopapilla and normal discs.
References
Allingham RR, Damji KF, Shields MB. Shields Textbook of Glaucoma. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2011.
Tanna AP, Boland MV, Giaconi JA, Krishnan C, Lin SC, Medeiros FA, Moroi SE, Sit AJ. American Academy of Ophthalmology. Basic and Science Course. Section 10: Glaucoma. 2023-2024.
Jonas JB, Thomas R, George R, Berenshtein E, Muliyil J. Optic disc morphology in south India: the Vellore Eye Study. Br J Ophthalmol. 2003;87(2):189. doi:10.1136/bjo.87.2.189
Costa AMC, Cronemberger S. Optic Disc and Retinal Nerve Fiber Layer Thickness Descriptive Analysis in Megalopapilla. J Glaucoma. 2014. doi:10.1097/IJG.0b013e318279b3af
Mansoori T, Viswanath K, Balakrishna N. Optic disc topography in normal Indian eyes using spectral domain optical coherence tomography. Indian J Ophthalmol. 2011. doi:10.4103/0301-4738.73716
Zhang YX, Huang HB, Wei SH. Clinical characteristics of nonglaucomatous optic disc cupping. Exp Ther Med. 2014. doi:10.3892/etm.2014.1508
Marsh BC, Cantor LB, WuDunn D, Hoop J, Lipyanik J, Patella VM, Budenz DL, Greenfield DS, Savell J, Schuman JS, Varma R. Optic nerve head (ONH) topographic analysis by stratus OCT in normal subjects: correlation to disc size, age, and ethnicity. J Glaucoma. 2010. doi:10.1097/IJG.0b013e3181b6e5cd
Ramrattan RS, Wolfs RC, Jonas JB, Hofman A, de Jong PT. Determinants of optic disc characteristics in a general population: The Rotterdam Study. Ophthalmology. 1999. doi:10.1016/S0161-6420(99)90457-8
Hermann MM, Theofylaktopoulos I, Bangard N, Jonescu-Cuypers C, Coburger S, Diestelhorst M. Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol. 2004; doi:10.1136/bjo.2003.028068.
Sharifipour F, Morales E, Lee JW, Giaconi J, Afifi AA, Yu F, Caprioli J, Nouri-Mahdavi K. Vertical Macular Asymmetry Measures Derived From SD-OCT for Detection of Early Glaucoma. Invest Ophthalmol Vis Sci. September 2017. doi:10.1167/iovs.17-21961
Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016. doi:10.1167/iovs.15-18944
Strouthidis NG, Yang H, Reynaud JF, Grimm JL, Gardiner SK, Fortune B, Burgoyne CF. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci. 2009. doi:10.1167/iovs.09-3586
Corredor-Arroyo J, Teherán-Forero O, Ochoa-Díaz M, Ramos-Clason EC. Regla ISNT en fotografías de disco óptico, oftalmoscopia indirecta y medición de CFN con OCT. Rev Soc Colomb Oftalmol. 2022;55(2):50-57. DOI: 10.24875/RSCO.22000002.
Ozcan Y, Ozcaliskan S, Balci S, Artunay O. The correlation of radial peripapillary capillary density measurements with optic nerve head morphology and retinal nerve fiber layer thickness in healthy eyes. Photodiagnosis Photodyn Ther. 2020. doi:10.1016/j.pdpdt.2020.102008
Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014. doi:10.1016/j.ophtha.2014.01.021
Appukuttan B, Giridhar A, Gopalakrishnan M, Sivaprasad S. Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians. Indian J Ophthalmol. 2014. doi:10.4103/0301-4738.116466
Maisel JM, Pearlstein CS, Adams WH, Heotis PM. Large optic disks in the Marshallese population. Am J Ophthalmol. 1989. doi:10.1016/0002-9394(89)90213-4
Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. doi:10.1016/s0039-6257(98)00049-6
Nova Avila GN. Macrodisco y glaucoma en individuos estudiados con tomografía óptica coherente. [Tesis de grado]. Universidad del Rosario; 2012. doi:10.48713/10336_4091
Vasquez Alania PY, Gálvez Olórtegui T, Ayamamani Torres P, Pantoja Dávalos N, Fernandez Llerena S. Características morfométricas de disco óptico y espesor de capa de fibras nerviosas de la retina mediante tomografía de coherencia óptica Cirrus 5000 en pacientes sanos atendidos en el Instituto Nacional de Oftalmología. Arch Soc Esp Oftalmol. 2019;94(12):579–584. doi:10.1016/j.oftal.2019.07.016.
Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J. Determinants of Normal Retinal Nerve Fiber Layer Thickness Measured by Stratus OCT. Ophthalmology. 2007. doi:10.1016/j.ophtha.2006.08.046
Kayaarası Öztürker Z, Eltutar K, Karini B, Özdogan Erkul S, Ayrancı Osmanbaşoğlu Ö, Sultan P. Optic nerve head topography and retinal structural changes in eyes with macrodisks: a comparative study with spectral domain optical coherence tomography. Clin Ophthalmol. 2016. doi:10.2147/OPTH.S102789
Lee ES, Kang SY, Choi EH, Kim JH, Kim NR, Seong GJ, Kim CY. Comparisons of nerve fiber layer thickness measurements between Stratus, Cirrus, and RTVue OCTs in healthy and glaucomatous eyes. Optom Vis Sci. 2011. doi:10.1097/OPX.0b013e318215cc40
Sánchez-Dalmau B, Llorenç V, Ortiz S, Martínez L. Comparación de tres instrumentos de tomografía de coherencia óptica, un time-domain y dos Fourier-domain, en la estimación del grosor de la capa de fibras nerviosas de la retina. Arch Soc Esp Oftalmol. 2010. doi:10.1016/S0365-6691(10)55002-0
Alasil T, Wang K, Keane PA, Lee H, Baniasadi N, de Boer JF, Chen TC. Analysis of normal retinal nerve fiber layer thickness by age, sex, and race using spectral domain optical coherence tomography. J Glaucoma. 2013. doi: 10.1097/IJG.0b013e318255bb4a.
Varma R, Skaf M, Barron E. Retinal Nerve Fiber Layer Thickness in Normal Human Eyes. Ophthalmology. 1997;104(2):174. doi:10.1016/S0161-6420(96)30381-3.
Savini G, Zanini M, Carelli V, Sadun AA, Ross-Cisneros FN, Barboni P. Correlation between retinal nerve fibre layer thickness and optic nerve head size: an optical coherence tomography study. Br J Ophthalmol. 2005. doi:10.1136/bjo.2004.052498
Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma. 2020. doi:10.1097/IJG.0000000000001463
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 American Journal of Medical and Clinical Research & Reviews
This work is licensed under a Creative Commons Attribution 4.0 International License.